frillrun/include/cglm/vec3.h

1083 lines
24 KiB
C
Raw Normal View History

2024-08-24 04:47:58 +00:00
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Macros:
GLM_VEC3_ONE_INIT
GLM_VEC3_ZERO_INIT
GLM_VEC3_ONE
GLM_VEC3_ZERO
GLM_YUP
GLM_ZUP
GLM_XUP
Functions:
CGLM_INLINE void glm_vec3(vec4 v4, vec3 dest);
CGLM_INLINE void glm_vec3_copy(vec3 a, vec3 dest);
CGLM_INLINE void glm_vec3_zero(vec3 v);
CGLM_INLINE void glm_vec3_one(vec3 v);
CGLM_INLINE float glm_vec3_dot(vec3 a, vec3 b);
CGLM_INLINE float glm_vec3_norm2(vec3 v);
CGLM_INLINE float glm_vec3_norm(vec3 v);
CGLM_INLINE float glm_vec3_norm_one(vec3 v);
CGLM_INLINE float glm_vec3_norm_inf(vec3 v);
CGLM_INLINE void glm_vec3_add(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_adds(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec3_sub(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_subs(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec3_mul(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_scale(vec3 v, float s, vec3 dest);
CGLM_INLINE void glm_vec3_scale_as(vec3 v, float s, vec3 dest);
CGLM_INLINE void glm_vec3_div(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_divs(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec3_addadd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_subadd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_muladd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_muladds(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_minadd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_flipsign(vec3 v);
CGLM_INLINE void glm_vec3_flipsign_to(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_negate_to(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_negate(vec3 v);
CGLM_INLINE void glm_vec3_inv(vec3 v);
CGLM_INLINE void glm_vec3_inv_to(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_normalize(vec3 v);
CGLM_INLINE void glm_vec3_normalize_to(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_cross(vec3 a, vec3 b, vec3 d);
CGLM_INLINE void glm_vec3_crossn(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE float glm_vec3_angle(vec3 a, vec3 b);
CGLM_INLINE void glm_vec3_rotate(vec3 v, float angle, vec3 axis);
CGLM_INLINE void glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_proj(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_center(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE float glm_vec3_distance(vec3 a, vec3 b);
CGLM_INLINE float glm_vec3_distance2(vec3 a, vec3 b);
CGLM_INLINE void glm_vec3_maxv(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_minv(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_ortho(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_clamp(vec3 v, float minVal, float maxVal);
CGLM_INLINE void glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest);
CGLM_INLINE void glm_vec3_lerpc(vec3 from, vec3 to, float t, vec3 dest);
CGLM_INLINE void glm_vec3_mix(vec3 from, vec3 to, float t, vec3 dest);
CGLM_INLINE void glm_vec3_mixc(vec3 from, vec3 to, float t, vec3 dest);
CGLM_INLINE void glm_vec3_step_uni(float edge, vec3 x, vec3 dest);
CGLM_INLINE void glm_vec3_step(vec3 edge, vec3 x, vec3 dest);
CGLM_INLINE void glm_vec3_smoothstep_uni(float edge0, float edge1, vec3 x, vec3 dest);
CGLM_INLINE void glm_vec3_smoothstep(vec3 edge0, vec3 edge1, vec3 x, vec3 dest);
CGLM_INLINE void glm_vec3_smoothinterp(vec3 from, vec3 to, float t, vec3 dest);
CGLM_INLINE void glm_vec3_smoothinterpc(vec3 from, vec3 to, float t, vec3 dest);
CGLM_INLINE void glm_vec3_swizzle(vec3 v, int mask, vec3 dest);
Convenient:
CGLM_INLINE void glm_cross(vec3 a, vec3 b, vec3 d);
CGLM_INLINE float glm_dot(vec3 a, vec3 b);
CGLM_INLINE void glm_normalize(vec3 v);
CGLM_INLINE void glm_normalize_to(vec3 v, vec3 dest);
DEPRECATED:
glm_vec3_dup
glm_vec3_flipsign
glm_vec3_flipsign_to
glm_vec3_inv
glm_vec3_inv_to
glm_vec3_mulv
*/
#ifndef cglm_vec3_h
#define cglm_vec3_h
#include "common.h"
#include "vec4.h"
#include "vec3-ext.h"
#include "util.h"
/* DEPRECATED! use _copy, _ucopy versions */
#define glm_vec3_dup(v, dest) glm_vec3_copy(v, dest)
#define glm_vec3_flipsign(v) glm_vec3_negate(v)
#define glm_vec3_flipsign_to(v, dest) glm_vec3_negate_to(v, dest)
#define glm_vec3_inv(v) glm_vec3_negate(v)
#define glm_vec3_inv_to(v, dest) glm_vec3_negate_to(v, dest)
#define glm_vec3_mulv(a, b, d) glm_vec3_mul(a, b, d)
#define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
#define GLM_VEC3_ZERO_INIT {0.0f, 0.0f, 0.0f}
#define GLM_VEC3_ONE ((vec3)GLM_VEC3_ONE_INIT)
#define GLM_VEC3_ZERO ((vec3)GLM_VEC3_ZERO_INIT)
#define GLM_YUP ((vec3){0.0f, 1.0f, 0.0f})
#define GLM_ZUP ((vec3){0.0f, 0.0f, 1.0f})
#define GLM_XUP ((vec3){1.0f, 0.0f, 0.0f})
#define GLM_FORWARD ((vec3){0.0f, 0.0f, -1.0f})
#define GLM_XXX GLM_SHUFFLE3(0, 0, 0)
#define GLM_YYY GLM_SHUFFLE3(1, 1, 1)
#define GLM_ZZZ GLM_SHUFFLE3(2, 2, 2)
#define GLM_ZYX GLM_SHUFFLE3(0, 1, 2)
/*!
* @brief init vec3 using vec4
*
* @param[in] v4 vector4
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3(vec4 v4, vec3 dest) {
dest[0] = v4[0];
dest[1] = v4[1];
dest[2] = v4[2];
}
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] a source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_copy(vec3 a, vec3 dest) {
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
}
/*!
* @brief make vector zero
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec3_zero(vec3 v) {
v[0] = v[1] = v[2] = 0.0f;
}
/*!
* @brief make vector one
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec3_one(vec3 v) {
v[0] = v[1] = v[2] = 1.0f;
}
/*!
* @brief vec3 dot product
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return dot product
*/
CGLM_INLINE
float
glm_vec3_dot(vec3 a, vec3 b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
/*!
* @brief norm * norm (magnitude) of vec
*
* we can use this func instead of calling norm * norm, because it would call
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
* not good name for this func
*
* @param[in] v vector
*
* @return norm * norm
*/
CGLM_INLINE
float
glm_vec3_norm2(vec3 v) {
return glm_vec3_dot(v, v);
}
/*!
* @brief euclidean norm (magnitude), also called L2 norm
* this will give magnitude of vector in euclidean space
*
* @param[in] v vector
*
* @return norm
*/
CGLM_INLINE
float
glm_vec3_norm(vec3 v) {
return sqrtf(glm_vec3_norm2(v));
}
/*!
* @brief L1 norm of vec3
* Also known as Manhattan Distance or Taxicab norm.
* L1 Norm is the sum of the magnitudes of the vectors in a space.
* It is calculated as the sum of the absolute values of the vector components.
* In this norm, all the components of the vector are weighted equally.
*
* This computes:
* R = |v[0]| + |v[1]| + |v[2]|
*
* @param[in] v vector
*
* @return L1 norm
*/
CGLM_INLINE
float
glm_vec3_norm_one(vec3 v) {
vec3 t;
glm_vec3_abs(v, t);
return glm_vec3_hadd(t);
}
/*!
* @brief infinity norm of vec3
* Also known as Maximum norm.
* Infinity Norm is the largest magnitude among each element of a vector.
* It is calculated as the maximum of the absolute values of the vector components.
*
* This computes:
* inf norm = max(|v[0]|, |v[1]|, |v[2]|)
*
* @param[in] v vector
*
* @return infinity norm
*/
CGLM_INLINE
float
glm_vec3_norm_inf(vec3 v) {
vec3 t;
glm_vec3_abs(v, t);
return glm_vec3_max(t);
}
/*!
* @brief add a vector to b vector store result in dest
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec3_add(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] + b[0];
dest[1] = a[1] + b[1];
dest[2] = a[2] + b[2];
}
/*!
* @brief add scalar to v vector store result in dest (d = v + s)
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec3_adds(vec3 v, float s, vec3 dest) {
dest[0] = v[0] + s;
dest[1] = v[1] + s;
dest[2] = v[2] + s;
}
/*!
* @brief subtract b vector from a vector store result in dest
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec3_sub(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
dest[2] = a[2] - b[2];
}
/*!
* @brief subtract scalar from v vector store result in dest (d = v - s)
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec3_subs(vec3 v, float s, vec3 dest) {
dest[0] = v[0] - s;
dest[1] = v[1] - s;
dest[2] = v[2] - s;
}
/*!
* @brief multiply two vector (component-wise multiplication)
*
* @param a vector1
* @param b vector2
* @param dest v3 = (a[0] * b[0], a[1] * b[1], a[2] * b[2])
*/
CGLM_INLINE
void
glm_vec3_mul(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] * b[0];
dest[1] = a[1] * b[1];
dest[2] = a[2] * b[2];
}
/*!
* @brief multiply/scale vec3 vector with scalar: result = v * s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec3_scale(vec3 v, float s, vec3 dest) {
dest[0] = v[0] * s;
dest[1] = v[1] * s;
dest[2] = v[2] * s;
}
/*!
* @brief make vec3 vector scale as specified: result = unit(v) * s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec3_scale_as(vec3 v, float s, vec3 dest) {
float norm;
norm = glm_vec3_norm(v);
if (norm == 0.0f) {
glm_vec3_zero(dest);
return;
}
glm_vec3_scale(v, s / norm, dest);
}
/*!
* @brief div vector with another component-wise division: d = a / b
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2])
*/
CGLM_INLINE
void
glm_vec3_div(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] / b[0];
dest[1] = a[1] / b[1];
dest[2] = a[2] / b[2];
}
/*!
* @brief div vector with scalar: d = v / s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest result = (a[0]/s, a[1]/s, a[2]/s)
*/
CGLM_INLINE
void
glm_vec3_divs(vec3 v, float s, vec3 dest) {
dest[0] = v[0] / s;
dest[1] = v[1] / s;
dest[2] = v[2] / s;
}
/*!
* @brief add two vectors and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
CGLM_INLINE
void
glm_vec3_addadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] + b[0];
dest[1] += a[1] + b[1];
dest[2] += a[2] + b[2];
}
/*!
* @brief sub two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
CGLM_INLINE
void
glm_vec3_subadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] - b[0];
dest[1] += a[1] - b[1];
dest[2] += a[2] - b[2];
}
/*!
* @brief mul two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a * b)
*/
CGLM_INLINE
void
glm_vec3_muladd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] * b[0];
dest[1] += a[1] * b[1];
dest[2] += a[2] * b[2];
}
/*!
* @brief mul vector with scalar and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector
* @param[in] s scalar
* @param[out] dest dest += (a * b)
*/
CGLM_INLINE
void
glm_vec3_muladds(vec3 a, float s, vec3 dest) {
dest[0] += a[0] * s;
dest[1] += a[1] * s;
dest[2] += a[2] * s;
}
/*!
* @brief add max of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += max(a, b)
*/
CGLM_INLINE
void
glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += glm_max(a[0], b[0]);
dest[1] += glm_max(a[1], b[1]);
dest[2] += glm_max(a[2], b[2]);
}
/*!
* @brief add min of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += min(a, b)
*/
CGLM_INLINE
void
glm_vec3_minadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += glm_min(a[0], b[0]);
dest[1] += glm_min(a[1], b[1]);
dest[2] += glm_min(a[2], b[2]);
}
/*!
* @brief negate vector components and store result in dest
*
* @param[in] v vector
* @param[out] dest result vector
*/
CGLM_INLINE
void
glm_vec3_negate_to(vec3 v, vec3 dest) {
dest[0] = -v[0];
dest[1] = -v[1];
dest[2] = -v[2];
}
/*!
* @brief negate vector components
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec3_negate(vec3 v) {
glm_vec3_negate_to(v, v);
}
/*!
* @brief normalize vec3 and store result in same vec
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec3_normalize(vec3 v) {
float norm;
norm = glm_vec3_norm(v);
if (norm == 0.0f) {
v[0] = v[1] = v[2] = 0.0f;
return;
}
glm_vec3_scale(v, 1.0f / norm, v);
}
/*!
* @brief normalize vec3 to dest
*
* @param[in] v source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_normalize_to(vec3 v, vec3 dest) {
float norm;
norm = glm_vec3_norm(v);
if (norm == 0.0f) {
glm_vec3_zero(dest);
return;
}
glm_vec3_scale(v, 1.0f / norm, dest);
}
/*!
* @brief cross product of two vector (RH)
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_cross(vec3 a, vec3 b, vec3 dest) {
vec3 c;
/* (u2.v3 - u3.v2, u3.v1 - u1.v3, u1.v2 - u2.v1) */
c[0] = a[1] * b[2] - a[2] * b[1];
c[1] = a[2] * b[0] - a[0] * b[2];
c[2] = a[0] * b[1] - a[1] * b[0];
glm_vec3_copy(c, dest);
}
/*!
* @brief cross product of two vector (RH) and normalize the result
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_crossn(vec3 a, vec3 b, vec3 dest) {
glm_vec3_cross(a, b, dest);
glm_vec3_normalize(dest);
}
/*!
* @brief angle betwen two vector
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return angle as radians
*/
CGLM_INLINE
float
glm_vec3_angle(vec3 a, vec3 b) {
float norm, dot;
/* maybe compiler generate approximation instruction (rcp) */
norm = 1.0f / (glm_vec3_norm(a) * glm_vec3_norm(b));
dot = glm_vec3_dot(a, b) * norm;
if (dot > 1.0f)
return 0.0f;
else if (dot < -1.0f)
return CGLM_PI;
return acosf(dot);
}
/*!
* @brief rotate vec3 around axis by angle using Rodrigues' rotation formula
*
* @param[in, out] v vector
* @param[in] axis axis vector (must be unit vector)
* @param[in] angle angle by radians
*/
CGLM_INLINE
void
glm_vec3_rotate(vec3 v, float angle, vec3 axis) {
vec3 v1, v2, k;
float c, s;
c = cosf(angle);
s = sinf(angle);
glm_vec3_normalize_to(axis, k);
/* Right Hand, Rodrigues' rotation formula:
v = v*cos(t) + (kxv)sin(t) + k*(k.v)(1 - cos(t))
*/
glm_vec3_scale(v, c, v1);
glm_vec3_cross(k, v, v2);
glm_vec3_scale(v2, s, v2);
glm_vec3_add(v1, v2, v1);
glm_vec3_scale(k, glm_vec3_dot(k, v) * (1.0f - c), v2);
glm_vec3_add(v1, v2, v);
}
/*!
* @brief apply rotation matrix to vector
*
* matrix format should be (no perspective):
* a b c x
* e f g y
* i j k z
* 0 0 0 w
*
* @param[in] m affine matrix or rot matrix
* @param[in] v vector
* @param[out] dest rotated vector
*/
CGLM_INLINE
void
glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest) {
vec4 x, y, z, res;
glm_vec4_normalize_to(m[0], x);
glm_vec4_normalize_to(m[1], y);
glm_vec4_normalize_to(m[2], z);
glm_vec4_scale(x, v[0], res);
glm_vec4_muladds(y, v[1], res);
glm_vec4_muladds(z, v[2], res);
glm_vec3(res, dest);
}
/*!
* @brief apply rotation matrix to vector
*
* @param[in] m affine matrix or rot matrix
* @param[in] v vector
* @param[out] dest rotated vector
*/
CGLM_INLINE
void
glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest) {
vec4 res, x, y, z;
glm_vec4(m[0], 0.0f, x);
glm_vec4(m[1], 0.0f, y);
glm_vec4(m[2], 0.0f, z);
glm_vec4_normalize(x);
glm_vec4_normalize(y);
glm_vec4_normalize(z);
glm_vec4_scale(x, v[0], res);
glm_vec4_muladds(y, v[1], res);
glm_vec4_muladds(z, v[2], res);
glm_vec3(res, dest);
}
/*!
* @brief project a vector onto b vector
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest projected vector
*/
CGLM_INLINE
void
glm_vec3_proj(vec3 a, vec3 b, vec3 dest) {
glm_vec3_scale(b,
glm_vec3_dot(a, b) / glm_vec3_norm2(b),
dest);
}
/**
* @brief find center point of two vector
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest center point
*/
CGLM_INLINE
void
glm_vec3_center(vec3 a, vec3 b, vec3 dest) {
glm_vec3_add(a, b, dest);
glm_vec3_scale(dest, 0.5f, dest);
}
/**
* @brief squared distance between two vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @return returns squared distance (distance * distance)
*/
CGLM_INLINE
float
glm_vec3_distance2(vec3 a, vec3 b) {
return glm_pow2(a[0] - b[0])
+ glm_pow2(a[1] - b[1])
+ glm_pow2(a[2] - b[2]);
}
/**
* @brief distance between two vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @return returns distance
*/
CGLM_INLINE
float
glm_vec3_distance(vec3 a, vec3 b) {
return sqrtf(glm_vec3_distance2(a, b));
}
/*!
* @brief max values of vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_maxv(vec3 a, vec3 b, vec3 dest) {
dest[0] = glm_max(a[0], b[0]);
dest[1] = glm_max(a[1], b[1]);
dest[2] = glm_max(a[2], b[2]);
}
/*!
* @brief min values of vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_minv(vec3 a, vec3 b, vec3 dest) {
dest[0] = glm_min(a[0], b[0]);
dest[1] = glm_min(a[1], b[1]);
dest[2] = glm_min(a[2], b[2]);
}
/*!
* @brief possible orthogonal/perpendicular vector
*
* @param[in] v vector
* @param[out] dest orthogonal/perpendicular vector
*/
CGLM_INLINE
void
glm_vec3_ortho(vec3 v, vec3 dest) {
float ignore;
float f = modff(fabsf(v[0]) + 0.5f, &ignore);
vec3 result = {-v[1], v[0] - f * v[2], f * v[1]};
glm_vec3_copy(result, dest);
}
/*!
* @brief clamp vector's individual members between min and max values
*
* @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
CGLM_INLINE
void
glm_vec3_clamp(vec3 v, float minVal, float maxVal) {
v[0] = glm_clamp(v[0], minVal, maxVal);
v[1] = glm_clamp(v[1], minVal, maxVal);
v[2] = glm_clamp(v[2], minVal, maxVal);
}
/*!
* @brief linear interpolation between two vectors
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount)
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest) {
vec3 s, v;
/* from + s * (to - from) */
glm_vec3_broadcast(t, s);
glm_vec3_sub(to, from, v);
glm_vec3_mul(s, v, v);
glm_vec3_add(from, v, dest);
}
/*!
* @brief linear interpolation between two vectors (clamped)
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_lerpc(vec3 from, vec3 to, float t, vec3 dest) {
glm_vec3_lerp(from, to, glm_clamp_zo(t), dest);
}
/*!
* @brief linear interpolation between two vectors
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount)
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_mix(vec3 from, vec3 to, float t, vec3 dest) {
glm_vec3_lerp(from, to, t, dest);
}
/*!
* @brief linear interpolation between two vectors (clamped)
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_mixc(vec3 from, vec3 to, float t, vec3 dest) {
glm_vec3_lerpc(from, to, t, dest);
}
/*!
* @brief threshold function (unidimensional)
*
* @param[in] edge threshold
* @param[in] x value to test against threshold
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_step_uni(float edge, vec3 x, vec3 dest) {
dest[0] = glm_step(edge, x[0]);
dest[1] = glm_step(edge, x[1]);
dest[2] = glm_step(edge, x[2]);
}
/*!
* @brief threshold function
*
* @param[in] edge threshold
* @param[in] x value to test against threshold
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_step(vec3 edge, vec3 x, vec3 dest) {
dest[0] = glm_step(edge[0], x[0]);
dest[1] = glm_step(edge[1], x[1]);
dest[2] = glm_step(edge[2], x[2]);
}
/*!
* @brief threshold function with a smooth transition (unidimensional)
*
* @param[in] edge0 low threshold
* @param[in] edge1 high threshold
* @param[in] x value to test against threshold
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_smoothstep_uni(float edge0, float edge1, vec3 x, vec3 dest) {
dest[0] = glm_smoothstep(edge0, edge1, x[0]);
dest[1] = glm_smoothstep(edge0, edge1, x[1]);
dest[2] = glm_smoothstep(edge0, edge1, x[2]);
}
/*!
* @brief threshold function with a smooth transition
*
* @param[in] edge0 low threshold
* @param[in] edge1 high threshold
* @param[in] x value to test against threshold
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_smoothstep(vec3 edge0, vec3 edge1, vec3 x, vec3 dest) {
dest[0] = glm_smoothstep(edge0[0], edge1[0], x[0]);
dest[1] = glm_smoothstep(edge0[1], edge1[1], x[1]);
dest[2] = glm_smoothstep(edge0[2], edge1[2], x[2]);
}
/*!
* @brief smooth Hermite interpolation between two vectors
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount)
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_smoothinterp(vec3 from, vec3 to, float t, vec3 dest) {
vec3 s, v;
/* from + s * (to - from) */
glm_vec3_broadcast(glm_smooth(t), s);
glm_vec3_sub(to, from, v);
glm_vec3_mul(s, v, v);
glm_vec3_add(from, v, dest);
}
/*!
* @brief smooth Hermite interpolation between two vectors (clamped)
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_smoothinterpc(vec3 from, vec3 to, float t, vec3 dest) {
glm_vec3_smoothinterp(from, to, glm_clamp_zo(t), dest);
}
/*!
* @brief swizzle vector components
*
* you can use existin masks e.g. GLM_XXX, GLM_ZYX
*
* @param[in] v source
* @param[in] mask mask
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_swizzle(vec3 v, int mask, vec3 dest) {
vec3 t;
t[0] = v[(mask & (3 << 0))];
t[1] = v[(mask & (3 << 2)) >> 2];
t[2] = v[(mask & (3 << 4)) >> 4];
glm_vec3_copy(t, dest);
}
/*!
* @brief vec3 cross product
*
* this is just convenient wrapper
*
* @param[in] a source 1
* @param[in] b source 2
* @param[out] d destination
*/
CGLM_INLINE
void
glm_cross(vec3 a, vec3 b, vec3 d) {
glm_vec3_cross(a, b, d);
}
/*!
* @brief vec3 dot product
*
* this is just convenient wrapper
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return dot product
*/
CGLM_INLINE
float
glm_dot(vec3 a, vec3 b) {
return glm_vec3_dot(a, b);
}
/*!
* @brief normalize vec3 and store result in same vec
*
* this is just convenient wrapper
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_normalize(vec3 v) {
glm_vec3_normalize(v);
}
/*!
* @brief normalize vec3 to dest
*
* this is just convenient wrapper
*
* @param[in] v source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_normalize_to(vec3 v, vec3 dest) {
glm_vec3_normalize_to(v, dest);
}
#endif /* cglm_vec3_h */