frillrun/include/cglm/affine.h
2024-08-24 00:47:58 -04:00

239 lines
6.0 KiB
C

/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_translate_to(mat4 m, vec3 v, mat4 dest);
CGLM_INLINE void glm_translate(mat4 m, vec3 v);
CGLM_INLINE void glm_translate_x(mat4 m, float to);
CGLM_INLINE void glm_translate_y(mat4 m, float to);
CGLM_INLINE void glm_translate_z(mat4 m, float to);
CGLM_INLINE void glm_translate_make(mat4 m, vec3 v);
CGLM_INLINE void glm_scale_to(mat4 m, vec3 v, mat4 dest);
CGLM_INLINE void glm_scale_make(mat4 m, vec3 v);
CGLM_INLINE void glm_scale(mat4 m, vec3 v);
CGLM_INLINE void glm_scale_uni(mat4 m, float s);
CGLM_INLINE void glm_rotate_x(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_y(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_z(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_make(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotate(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_INLINE void glm_spin(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_decompose_scalev(mat4 m, vec3 s);
CGLM_INLINE bool glm_uniscaled(mat4 m);
CGLM_INLINE void glm_decompose_rs(mat4 m, mat4 r, vec3 s);
CGLM_INLINE void glm_decompose(mat4 m, vec4 t, mat4 r, vec3 s);
*/
#ifndef cglm_affine_h
#define cglm_affine_h
#include "common.h"
#include "util.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
#include "affine-mat.h"
/*!
* @brief creates NEW translate transform matrix by v vector
*
* @param[out] m affine transfrom
* @param[in] v translate vector [x, y, z]
*/
CGLM_INLINE
void
glm_translate_make(mat4 m, vec3 v) {
glm_mat4_identity(m);
glm_vec3_copy(v, m[3]);
}
/*!
* @brief scale existing transform matrix by v vector
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] v scale vector [x, y, z]
* @param[out] dest scaled matrix
*/
CGLM_INLINE
void
glm_scale_to(mat4 m, vec3 v, mat4 dest) {
glm_vec4_scale(m[0], v[0], dest[0]);
glm_vec4_scale(m[1], v[1], dest[1]);
glm_vec4_scale(m[2], v[2], dest[2]);
glm_vec4_copy(m[3], dest[3]);
}
/*!
* @brief creates NEW scale matrix by v vector
*
* @param[out] m affine transfrom
* @param[in] v scale vector [x, y, z]
*/
CGLM_INLINE
void
glm_scale_make(mat4 m, vec3 v) {
glm_mat4_identity(m);
m[0][0] = v[0];
m[1][1] = v[1];
m[2][2] = v[2];
}
/*!
* @brief scales existing transform matrix by v vector
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] v scale vector [x, y, z]
*/
CGLM_INLINE
void
glm_scale(mat4 m, vec3 v) {
glm_scale_to(m, v, m);
}
/*!
* @brief applies uniform scale to existing transform matrix v = [s, s, s]
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] s scale factor
*/
CGLM_INLINE
void
glm_scale_uni(mat4 m, float s) {
CGLM_ALIGN(8) vec3 v = { s, s, s };
glm_scale_to(m, v, m);
}
/*!
* @brief creates NEW rotation matrix by angle and axis
*
* axis will be normalized so you don't need to normalize it
*
* @param[out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_rotate_make(mat4 m, float angle, vec3 axis) {
CGLM_ALIGN(8) vec3 axisn, v, vs;
float c;
c = cosf(angle);
glm_vec3_normalize_to(axis, axisn);
glm_vec3_scale(axisn, 1.0f - c, v);
glm_vec3_scale(axisn, sinf(angle), vs);
glm_vec3_scale(axisn, v[0], m[0]);
glm_vec3_scale(axisn, v[1], m[1]);
glm_vec3_scale(axisn, v[2], m[2]);
m[0][0] += c; m[1][0] -= vs[2]; m[2][0] += vs[1];
m[0][1] += vs[2]; m[1][1] += c; m[2][1] -= vs[0];
m[0][2] -= vs[1]; m[1][2] += vs[0]; m[2][2] += c;
m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0f;
m[3][3] = 1.0f;
}
/*!
* @brief decompose scale vector
*
* @param[in] m affine transform
* @param[out] s scale vector (Sx, Sy, Sz)
*/
CGLM_INLINE
void
glm_decompose_scalev(mat4 m, vec3 s) {
s[0] = glm_vec3_norm(m[0]);
s[1] = glm_vec3_norm(m[1]);
s[2] = glm_vec3_norm(m[2]);
}
/*!
* @brief returns true if matrix is uniform scaled. This is helpful for
* creating normal matrix.
*
* @param[in] m m
*
* @return boolean
*/
CGLM_INLINE
bool
glm_uniscaled(mat4 m) {
CGLM_ALIGN(8) vec3 s;
glm_decompose_scalev(m, s);
return glm_vec3_eq_all(s);
}
/*!
* @brief decompose rotation matrix (mat4) and scale vector [Sx, Sy, Sz]
* DON'T pass projected matrix here
*
* @param[in] m affine transform
* @param[out] r rotation matrix
* @param[out] s scale matrix
*/
CGLM_INLINE
void
glm_decompose_rs(mat4 m, mat4 r, vec3 s) {
CGLM_ALIGN(16) vec4 t = {0.0f, 0.0f, 0.0f, 1.0f};
CGLM_ALIGN(8) vec3 v;
glm_vec4_copy(m[0], r[0]);
glm_vec4_copy(m[1], r[1]);
glm_vec4_copy(m[2], r[2]);
glm_vec4_copy(t, r[3]);
s[0] = glm_vec3_norm(m[0]);
s[1] = glm_vec3_norm(m[1]);
s[2] = glm_vec3_norm(m[2]);
glm_vec4_scale(r[0], 1.0f/s[0], r[0]);
glm_vec4_scale(r[1], 1.0f/s[1], r[1]);
glm_vec4_scale(r[2], 1.0f/s[2], r[2]);
/* Note from Apple Open Source (assume that the matrix is orthonormal):
check for a coordinate system flip. If the determinant
is -1, then negate the matrix and the scaling factors. */
glm_vec3_cross(m[0], m[1], v);
if (glm_vec3_dot(v, m[2]) < 0.0f) {
glm_vec4_negate(r[0]);
glm_vec4_negate(r[1]);
glm_vec4_negate(r[2]);
glm_vec3_negate(s);
}
}
/*!
* @brief decompose affine transform, TODO: extract shear factors.
* DON'T pass projected matrix here
*
* @param[in] m affine transfrom
* @param[out] t translation vector
* @param[out] r rotation matrix (mat4)
* @param[out] s scaling vector [X, Y, Z]
*/
CGLM_INLINE
void
glm_decompose(mat4 m, vec4 t, mat4 r, vec3 s) {
glm_vec4_copy(m[3], t);
glm_decompose_rs(m, r, s);
}
#include "affine-pre.h"
#include "affine-post.h"
#endif /* cglm_affine_h */