orbit-plus/include/cglm/mat3.h

425 lines
10 KiB
C

/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Macros:
GLM_MAT3_IDENTITY_INIT
GLM_MAT3_ZERO_INIT
GLM_MAT3_IDENTITY
GLM_MAT3_ZERO
glm_mat3_dup(mat, dest)
Functions:
CGLM_INLINE void glm_mat3_copy(mat3 mat, mat3 dest);
CGLM_INLINE void glm_mat3_identity(mat3 mat);
CGLM_INLINE void glm_mat3_identity_array(mat3 * restrict mat, size_t count);
CGLM_INLINE void glm_mat3_zero(mat3 mat);
CGLM_INLINE void glm_mat3_mul(mat3 m1, mat3 m2, mat3 dest);
CGLM_INLINE void glm_mat3_transpose_to(mat3 m, mat3 dest);
CGLM_INLINE void glm_mat3_transpose(mat3 m);
CGLM_INLINE void glm_mat3_mulv(mat3 m, vec3 v, vec3 dest);
CGLM_INLINE float glm_mat3_trace(mat3 m);
CGLM_INLINE void glm_mat3_quat(mat3 m, versor dest);
CGLM_INLINE void glm_mat3_scale(mat3 m, float s);
CGLM_INLINE float glm_mat3_det(mat3 mat);
CGLM_INLINE void glm_mat3_inv(mat3 mat, mat3 dest);
CGLM_INLINE void glm_mat3_swap_col(mat3 mat, int col1, int col2);
CGLM_INLINE void glm_mat3_swap_row(mat3 mat, int row1, int row2);
CGLM_INLINE float glm_mat3_rmc(vec3 r, mat3 m, vec3 c);
*/
#ifndef cglm_mat3_h
#define cglm_mat3_h
#include "common.h"
#include "vec3.h"
#ifdef CGLM_SSE_FP
# include "simd/sse2/mat3.h"
#endif
#define GLM_MAT3_IDENTITY_INIT {{1.0f, 0.0f, 0.0f}, \
{0.0f, 1.0f, 0.0f}, \
{0.0f, 0.0f, 1.0f}}
#define GLM_MAT3_ZERO_INIT {{0.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f}}
/* for C only */
#define GLM_MAT3_IDENTITY ((mat3)GLM_MAT3_IDENTITY_INIT)
#define GLM_MAT3_ZERO ((mat3)GLM_MAT3_ZERO_INIT)
/* DEPRECATED! use _copy, _ucopy versions */
#define glm_mat3_dup(mat, dest) glm_mat3_copy(mat, dest)
/*!
* @brief copy all members of [mat] to [dest]
*
* @param[in] mat source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_mat3_copy(mat3 mat, mat3 dest) {
dest[0][0] = mat[0][0];
dest[0][1] = mat[0][1];
dest[0][2] = mat[0][2];
dest[1][0] = mat[1][0];
dest[1][1] = mat[1][1];
dest[1][2] = mat[1][2];
dest[2][0] = mat[2][0];
dest[2][1] = mat[2][1];
dest[2][2] = mat[2][2];
}
/*!
* @brief make given matrix identity. It is identical with below,
* but it is more easy to do that with this func especially for members
* e.g. glm_mat3_identity(aStruct->aMatrix);
*
* @code
* glm_mat3_copy(GLM_MAT3_IDENTITY, mat); // C only
*
* // or
* mat3 mat = GLM_MAT3_IDENTITY_INIT;
* @endcode
*
* @param[in, out] mat destination
*/
CGLM_INLINE
void
glm_mat3_identity(mat3 mat) {
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_IDENTITY_INIT;
glm_mat3_copy(t, mat);
}
/*!
* @brief make given matrix array's each element identity matrix
*
* @param[in, out] mat matrix array (must be aligned (16/32)
* if alignment is not disabled)
*
* @param[in] count count of matrices
*/
CGLM_INLINE
void
glm_mat3_identity_array(mat3 * __restrict mat, size_t count) {
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_IDENTITY_INIT;
size_t i;
for (i = 0; i < count; i++) {
glm_mat3_copy(t, mat[i]);
}
}
/*!
* @brief make given matrix zero.
*
* @param[in, out] mat matrix
*/
CGLM_INLINE
void
glm_mat3_zero(mat3 mat) {
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_ZERO_INIT;
glm_mat3_copy(t, mat);
}
/*!
* @brief multiply m1 and m2 to dest
*
* m1, m2 and dest matrices can be same matrix, it is possible to write this:
*
* @code
* mat3 m = GLM_MAT3_IDENTITY_INIT;
* glm_mat3_mul(m, m, m);
* @endcode
*
* @param[in] m1 left matrix
* @param[in] m2 right matrix
* @param[out] dest destination matrix
*/
CGLM_INLINE
void
glm_mat3_mul(mat3 m1, mat3 m2, mat3 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat3_mul_sse2(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2],
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2],
a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2],
b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2],
b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2],
b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2];
dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
#endif
}
/*!
* @brief transpose mat3 and store in dest
*
* source matrix will not be transposed unless dest is m
*
* @param[in] m matrix
* @param[out] dest result
*/
CGLM_INLINE
void
glm_mat3_transpose_to(mat3 m, mat3 dest) {
dest[0][0] = m[0][0];
dest[0][1] = m[1][0];
dest[0][2] = m[2][0];
dest[1][0] = m[0][1];
dest[1][1] = m[1][1];
dest[1][2] = m[2][1];
dest[2][0] = m[0][2];
dest[2][1] = m[1][2];
dest[2][2] = m[2][2];
}
/*!
* @brief tranpose mat3 and store result in same matrix
*
* @param[in, out] m source and dest
*/
CGLM_INLINE
void
glm_mat3_transpose(mat3 m) {
CGLM_ALIGN_MAT mat3 tmp;
tmp[0][1] = m[1][0];
tmp[0][2] = m[2][0];
tmp[1][0] = m[0][1];
tmp[1][2] = m[2][1];
tmp[2][0] = m[0][2];
tmp[2][1] = m[1][2];
m[0][1] = tmp[0][1];
m[0][2] = tmp[0][2];
m[1][0] = tmp[1][0];
m[1][2] = tmp[1][2];
m[2][0] = tmp[2][0];
m[2][1] = tmp[2][1];
}
/*!
* @brief multiply mat3 with vec3 (column vector) and store in dest vector
*
* @param[in] m mat3 (left)
* @param[in] v vec3 (right, column vector)
* @param[out] dest vec3 (result, column vector)
*/
CGLM_INLINE
void
glm_mat3_mulv(mat3 m, vec3 v, vec3 dest) {
vec3 res;
res[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2];
res[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2];
res[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2];
glm_vec3_copy(res, dest);
}
/*!
* @brief trace of matrix
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
CGLM_INLINE
float
glm_mat3_trace(mat3 m) {
return m[0][0] + m[1][1] + m[2][2];
}
/*!
* @brief convert mat3 to quaternion
*
* @param[in] m rotation matrix
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_mat3_quat(mat3 m, versor dest) {
float trace, r, rinv;
/* it seems using like m12 instead of m[1][2] causes extra instructions */
trace = m[0][0] + m[1][1] + m[2][2];
if (trace >= 0.0f) {
r = sqrtf(1.0f + trace);
rinv = 0.5f / r;
dest[0] = rinv * (m[1][2] - m[2][1]);
dest[1] = rinv * (m[2][0] - m[0][2]);
dest[2] = rinv * (m[0][1] - m[1][0]);
dest[3] = r * 0.5f;
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
rinv = 0.5f / r;
dest[0] = r * 0.5f;
dest[1] = rinv * (m[0][1] + m[1][0]);
dest[2] = rinv * (m[0][2] + m[2][0]);
dest[3] = rinv * (m[1][2] - m[2][1]);
} else if (m[1][1] >= m[2][2]) {
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][1] + m[1][0]);
dest[1] = r * 0.5f;
dest[2] = rinv * (m[1][2] + m[2][1]);
dest[3] = rinv * (m[2][0] - m[0][2]);
} else {
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][2] + m[2][0]);
dest[1] = rinv * (m[1][2] + m[2][1]);
dest[2] = r * 0.5f;
dest[3] = rinv * (m[0][1] - m[1][0]);
}
}
/*!
* @brief scale (multiply with scalar) matrix
*
* multiply matrix with scalar
*
* @param[in, out] m matrix
* @param[in] s scalar
*/
CGLM_INLINE
void
glm_mat3_scale(mat3 m, float s) {
m[0][0] *= s; m[0][1] *= s; m[0][2] *= s;
m[1][0] *= s; m[1][1] *= s; m[1][2] *= s;
m[2][0] *= s; m[2][1] *= s; m[2][2] *= s;
}
/*!
* @brief mat3 determinant
*
* @param[in] mat matrix
*
* @return determinant
*/
CGLM_INLINE
float
glm_mat3_det(mat3 mat) {
float a = mat[0][0], b = mat[0][1], c = mat[0][2],
d = mat[1][0], e = mat[1][1], f = mat[1][2],
g = mat[2][0], h = mat[2][1], i = mat[2][2];
return a * (e * i - h * f) - d * (b * i - c * h) + g * (b * f - c * e);
}
/*!
* @brief inverse mat3 and store in dest
*
* @param[in] mat matrix
* @param[out] dest inverse matrix
*/
CGLM_INLINE
void
glm_mat3_inv(mat3 mat, mat3 dest) {
float det;
float a = mat[0][0], b = mat[0][1], c = mat[0][2],
d = mat[1][0], e = mat[1][1], f = mat[1][2],
g = mat[2][0], h = mat[2][1], i = mat[2][2];
dest[0][0] = e * i - f * h;
dest[0][1] = -(b * i - h * c);
dest[0][2] = b * f - e * c;
dest[1][0] = -(d * i - g * f);
dest[1][1] = a * i - c * g;
dest[1][2] = -(a * f - d * c);
dest[2][0] = d * h - g * e;
dest[2][1] = -(a * h - g * b);
dest[2][2] = a * e - b * d;
det = 1.0f / (a * dest[0][0] + b * dest[1][0] + c * dest[2][0]);
glm_mat3_scale(dest, det);
}
/*!
* @brief swap two matrix columns
*
* @param[in,out] mat matrix
* @param[in] col1 col1
* @param[in] col2 col2
*/
CGLM_INLINE
void
glm_mat3_swap_col(mat3 mat, int col1, int col2) {
vec3 tmp;
glm_vec3_copy(mat[col1], tmp);
glm_vec3_copy(mat[col2], mat[col1]);
glm_vec3_copy(tmp, mat[col2]);
}
/*!
* @brief swap two matrix rows
*
* @param[in,out] mat matrix
* @param[in] row1 row1
* @param[in] row2 row2
*/
CGLM_INLINE
void
glm_mat3_swap_row(mat3 mat, int row1, int row2) {
vec3 tmp;
tmp[0] = mat[0][row1];
tmp[1] = mat[1][row1];
tmp[2] = mat[2][row1];
mat[0][row1] = mat[0][row2];
mat[1][row1] = mat[1][row2];
mat[2][row1] = mat[2][row2];
mat[0][row2] = tmp[0];
mat[1][row2] = tmp[1];
mat[2][row2] = tmp[2];
}
/*!
* @brief helper for R (row vector) * M (matrix) * C (column vector)
*
* rmc stands for Row * Matrix * Column
*
* the result is scalar because R * M = Matrix1x3 (row vector),
* then Matrix1x3 * Vec3 (column vector) = Matrix1x1 (Scalar)
*
* @param[in] r row vector or matrix1x3
* @param[in] m matrix3x3
* @param[in] c column vector or matrix3x1
*
* @return scalar value e.g. Matrix1x1
*/
CGLM_INLINE
float
glm_mat3_rmc(vec3 r, mat3 m, vec3 c) {
vec3 tmp;
glm_mat3_mulv(m, c, tmp);
return glm_vec3_dot(r, tmp);
}
#endif /* cglm_mat3_h */