first commit

This commit is contained in:
dox 2023-02-11 23:18:45 -05:00
commit d723f08969
307 changed files with 38708 additions and 0 deletions

51
CMakeLists.txt Normal file
View File

@ -0,0 +1,51 @@
cmake_minimum_required(VERSION 3.10)
project(orbit-plus C)
set_target_properties(PROPERTIES LINKER_LANGUAGE C)
include_directories(include)
include_directories(${GLEW_INCLUDE_DIRS})
file(GLOB src
"${PROJECT_SOURCE_DIR}/src/*.c"
"${PROJECT_SOURCE_DIR}/src/engine/*.c"
"${PROJECT_SOURCE_DIR}/src/game/*.c"
"${PROJECT_SOURCE_DIR}/src/game/ecs/*.c"
"${PROJECT_SOURCE_DIR}/src/game/state/*.c"
"${PROJECT_SOURCE_DIR}/src/game/shader/*.c"
"${PROJECT_SOURCE_DIR}/src/util/*.c"
)
add_executable(${PROJECT_NAME} ${src})
find_package(SDL2 REQUIRED)
find_package(SDL2_mixer REQUIRED)
find_package(SDL2_ttf REQUIRED)
find_package(SDL2_image REQUIRED)
find_package(GLEW REQUIRED)
if (EMSCRIPTEN)
else()
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
set(CMAKE_C_FLAGS "-O2 -Wno-discarded-qualifiers -Wno-pointer-arith -Wno-unused-variable -Wno-unused-parameter -Wall -Wextra -pedantic -g")
endif()
if (CMAKE_BUILD_TYPE STREQUAL "Release")
set(CMAKE_C_FLAGS "-O2")
endif()
target_link_libraries(${PROJECT_NAME} m GL SDL2::SDL2 SDL2_mixer::SDL2_mixer SDL2_ttf::SDL2_ttf SDL2_image::SDL2_image GLEW::GLEW)
if (WIN32)
set(CMAKE_C_FLAGS "-mwindows ${CMAKE_C_FLAGS}")
target_link_libraries(${PROJECT_NAME} mingw32 m GL SDL2::SDL2 SDL2_mixer::SDL2_mixer SDL2_ttf::SDL2_ttf SDL2_image::SDL2_image GLEW::GLEW)
endif()
endif()
message("System: ${CMAKE_SYSTEM_NAME}")
message("Project: ${PROJECT_NAME}")
message("Build: ${CMAKE_BUILD_TYPE}")
message("Flags: ${CMAKE_C_FLAGS}")

674
LICENSE Executable file
View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

23
README.md Normal file
View File

@ -0,0 +1,23 @@
# Orbit+
A clone of the 2007 Adobe Flash game by Jacob Grahn ("Jiggmin"), using OpenGL and SDL.
## Build
### Dependencies
- SDL2
- SDL_image
- SDL_mixer
- SDL_ttf
### Linux/MinGW
This repository uses CMake to compile, so:
`mkdir build`
`cd build`
`cmake ..
`make`
Make sure you've got the games's resources downloaded and in the same directory as the executable. You can get that [here](https://shweetz.net/download/games/orbit-plus-resources.7z).

178
include/cglm/affine-mat.h Normal file
View File

@ -0,0 +1,178 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_mul(mat4 m1, mat4 m2, mat4 dest);
CGLM_INLINE void glm_inv_tr(mat4 mat);
*/
#ifndef cglm_affine_mat_h
#define cglm_affine_mat_h
#include "common.h"
#include "mat4.h"
#include "mat3.h"
#ifdef CGLM_SSE_FP
# include "simd/sse2/affine.h"
#endif
#ifdef CGLM_AVX_FP
# include "simd/avx/affine.h"
#endif
#ifdef CGLM_NEON_FP
# include "simd/neon/affine.h"
#endif
/*!
* @brief this is similar to glm_mat4_mul but specialized to affine transform
*
* Matrix format should be:
* R R R X
* R R R Y
* R R R Z
* 0 0 0 W
*
* this reduces some multiplications. It should be faster than mat4_mul.
* if you are not sure about matrix format then DON'T use this! use mat4_mul
*
* @param[in] m1 affine matrix 1
* @param[in] m2 affine matrix 2
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_mul(mat4 m1, mat4 m2, mat4 dest) {
#ifdef __AVX__
glm_mul_avx(m1, m2, dest);
#elif defined( __SSE__ ) || defined( __SSE2__ )
glm_mul_sse2(m1, m2, dest);
#elif defined(CGLM_NEON_FP)
glm_mul_neon(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], a23 = m1[2][3],
a30 = m1[3][0], a31 = m1[3][1], a32 = m1[3][2], a33 = m1[3][3],
b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2],
b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2],
b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2],
b30 = m2[3][0], b31 = m2[3][1], b32 = m2[3][2], b33 = m2[3][3];
dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
dest[0][3] = a03 * b00 + a13 * b01 + a23 * b02;
dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
dest[1][3] = a03 * b10 + a13 * b11 + a23 * b12;
dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
dest[2][3] = a03 * b20 + a13 * b21 + a23 * b22;
dest[3][0] = a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33;
dest[3][1] = a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33;
dest[3][2] = a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33;
dest[3][3] = a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33;
#endif
}
/*!
* @brief this is similar to glm_mat4_mul but specialized to affine transform
*
* Right Matrix format should be:
* R R R 0
* R R R 0
* R R R 0
* 0 0 0 1
*
* this reduces some multiplications. It should be faster than mat4_mul.
* if you are not sure about matrix format then DON'T use this! use mat4_mul
*
* @param[in] m1 affine matrix 1
* @param[in] m2 affine matrix 2
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_mul_rot(mat4 m1, mat4 m2, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mul_rot_sse2(m1, m2, dest);
#elif defined(CGLM_NEON_FP)
glm_mul_rot_neon(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], a23 = m1[2][3],
a30 = m1[3][0], a31 = m1[3][1], a32 = m1[3][2], a33 = m1[3][3],
b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2],
b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2],
b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2];
dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
dest[0][3] = a03 * b00 + a13 * b01 + a23 * b02;
dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
dest[1][3] = a03 * b10 + a13 * b11 + a23 * b12;
dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
dest[2][3] = a03 * b20 + a13 * b21 + a23 * b22;
dest[3][0] = a30;
dest[3][1] = a31;
dest[3][2] = a32;
dest[3][3] = a33;
#endif
}
/*!
* @brief inverse orthonormal rotation + translation matrix (ridig-body)
*
* @code
* X = | R T | X' = | R' -R'T |
* | 0 1 | | 0 1 |
* @endcode
*
* @param[in,out] mat matrix
*/
CGLM_INLINE
void
glm_inv_tr(mat4 mat) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_inv_tr_sse2(mat);
#elif defined(CGLM_NEON_FP)
glm_inv_tr_neon(mat);
#else
CGLM_ALIGN_MAT mat3 r;
CGLM_ALIGN(8) vec3 t;
/* rotate */
glm_mat4_pick3t(mat, r);
glm_mat4_ins3(r, mat);
/* translate */
glm_mat3_mulv(r, mat[3], t);
glm_vec3_negate(t);
glm_vec3_copy(t, mat[3]);
#endif
}
#endif /* cglm_affine_mat_h */

247
include/cglm/affine-post.h Normal file
View File

@ -0,0 +1,247 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_affine_post_h
#define cglm_affine_post_h
/*
Functions:
CGLM_INLINE void glm_translated_to(mat4 m, vec3 v, mat4 dest);
CGLM_INLINE void glm_translated(mat4 m, vec3 v);
CGLM_INLINE void glm_translated_x(mat4 m, float to);
CGLM_INLINE void glm_translated_y(mat4 m, float to);
CGLM_INLINE void glm_translated_z(mat4 m, float to);
CGLM_INLINE void glm_rotated_x(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotated_y(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotated_z(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotated(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotated_at(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_INLINE void glm_spinned(mat4 m, float angle, vec3 axis);
*/
#include "common.h"
#include "util.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
#include "affine-mat.h"
/*!
* @brief translate existing transform matrix by v vector
* and stores result in same matrix
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] v translate vector [x, y, z]
*/
CGLM_INLINE
void
glm_translated(mat4 m, vec3 v) {
glm_vec3_add(m[3], v, m[3]);
}
/*!
* @brief translate existing transform matrix by v vector
* and store result in dest
*
* source matrix will remain same
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in] m affine transfrom
* @param[in] v translate vector [x, y, z]
* @param[out] dest translated matrix
*/
CGLM_INLINE
void
glm_translated_to(mat4 m, vec3 v, mat4 dest) {
glm_mat4_copy(m, dest);
glm_translated(dest, v);
}
/*!
* @brief translate existing transform matrix by x factor
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] x x factor
*/
CGLM_INLINE
void
glm_translated_x(mat4 m, float x) {
m[3][0] += x;
}
/*!
* @brief translate existing transform matrix by y factor
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] y y factor
*/
CGLM_INLINE
void
glm_translated_y(mat4 m, float y) {
m[3][1] += y;
}
/*!
* @brief translate existing transform matrix by z factor
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] z z factor
*/
CGLM_INLINE
void
glm_translated_z(mat4 m, float z) {
m[3][2] += z;
}
/*!
* @brief rotate existing transform matrix around X axis by angle
* and store result in dest
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
CGLM_INLINE
void
glm_rotated_x(mat4 m, float angle, mat4 dest) {
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
c = cosf(angle);
s = sinf(angle);
t[1][1] = c;
t[1][2] = s;
t[2][1] = -s;
t[2][2] = c;
glm_mul_rot(t, m, dest);
}
/*!
* @brief rotate existing transform matrix around Y axis by angle
* and store result in dest
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
CGLM_INLINE
void
glm_rotated_y(mat4 m, float angle, mat4 dest) {
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
c = cosf(angle);
s = sinf(angle);
t[0][0] = c;
t[0][2] = -s;
t[2][0] = s;
t[2][2] = c;
glm_mul_rot(t, m, dest);
}
/*!
* @brief rotate existing transform matrix around Z axis by angle
* and store result in dest
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
CGLM_INLINE
void
glm_rotated_z(mat4 m, float angle, mat4 dest) {
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
c = cosf(angle);
s = sinf(angle);
t[0][0] = c;
t[0][1] = s;
t[1][0] = -s;
t[1][1] = c;
glm_mul_rot(t, m, dest);
}
/*!
* @brief rotate existing transform matrix around given axis by angle
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_rotated(mat4 m, float angle, vec3 axis) {
CGLM_ALIGN_MAT mat4 rot;
glm_rotate_make(rot, angle, axis);
glm_mul_rot(rot, m, m);
}
/*!
* @brief rotate existing transform
* around given axis by angle at given pivot point (rotation center)
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] pivot rotation center
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_rotated_at(mat4 m, vec3 pivot, float angle, vec3 axis) {
CGLM_ALIGN(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translated(m, pivot);
glm_rotated(m, angle, axis);
glm_translated(m, pivotInv);
}
/*!
* @brief rotate existing transform matrix around given axis by angle around self (doesn't affected by position)
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_spinned(mat4 m, float angle, vec3 axis) {
CGLM_ALIGN_MAT mat4 rot;
glm_rotate_atm(rot, m[3], angle, axis);
glm_mat4_mul(rot, m, m);
}
#endif /* cglm_affine_post_h */

285
include/cglm/affine-pre.h Normal file
View File

@ -0,0 +1,285 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_affine_pre_h
#define cglm_affine_pre_h
/*
Functions:
CGLM_INLINE void glm_translate_to(mat4 m, vec3 v, mat4 dest);
CGLM_INLINE void glm_translate(mat4 m, vec3 v);
CGLM_INLINE void glm_translate_x(mat4 m, float to);
CGLM_INLINE void glm_translate_y(mat4 m, float to);
CGLM_INLINE void glm_translate_z(mat4 m, float to);
CGLM_INLINE void glm_rotate_x(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_y(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_z(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_INLINE void glm_spin(mat4 m, float angle, vec3 axis);
*/
#include "common.h"
#include "util.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
#include "affine-mat.h"
/*!
* @brief translate existing transform matrix by v vector
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] v translate vector [x, y, z]
*/
CGLM_INLINE
void
glm_translate(mat4 m, vec3 v) {
#if defined(CGLM_SIMD)
glmm_128 m0, m1, m2, m3;
m0 = glmm_load(m[0]);
m1 = glmm_load(m[1]);
m2 = glmm_load(m[2]);
m3 = glmm_load(m[3]);
glmm_store(m[3],
glmm_fmadd(m0, glmm_set1(v[0]),
glmm_fmadd(m1, glmm_set1(v[1]),
glmm_fmadd(m2, glmm_set1(v[2]), m3))));
#else
glm_vec4_muladds(m[0], v[0], m[3]);
glm_vec4_muladds(m[1], v[1], m[3]);
glm_vec4_muladds(m[2], v[2], m[3]);
#endif
}
/*!
* @brief translate existing transform matrix by v vector
* and store result in dest
*
* source matrix will remain same
*
* @param[in] m affine transfrom
* @param[in] v translate vector [x, y, z]
* @param[out] dest translated matrix
*/
CGLM_INLINE
void
glm_translate_to(mat4 m, vec3 v, mat4 dest) {
glm_mat4_copy(m, dest);
glm_translate(dest, v);
}
/*!
* @brief translate existing transform matrix by x factor
*
* @param[in, out] m affine transfrom
* @param[in] x x factor
*/
CGLM_INLINE
void
glm_translate_x(mat4 m, float x) {
#if defined(CGLM_SIMD)
glmm_store(m[3], glmm_fmadd(glmm_load(m[0]), glmm_set1(x), glmm_load(m[3])));
#else
vec4 v1;
glm_vec4_scale(m[0], x, v1);
glm_vec4_add(v1, m[3], m[3]);
#endif
}
/*!
* @brief translate existing transform matrix by y factor
*
* @param[in, out] m affine transfrom
* @param[in] y y factor
*/
CGLM_INLINE
void
glm_translate_y(mat4 m, float y) {
#if defined(CGLM_SIMD)
glmm_store(m[3], glmm_fmadd(glmm_load(m[1]), glmm_set1(y), glmm_load(m[3])));
#else
vec4 v1;
glm_vec4_scale(m[1], y, v1);
glm_vec4_add(v1, m[3], m[3]);
#endif
}
/*!
* @brief translate existing transform matrix by z factor
*
* @param[in, out] m affine transfrom
* @param[in] z z factor
*/
CGLM_INLINE
void
glm_translate_z(mat4 m, float z) {
#if defined(CGLM_SIMD)
glmm_store(m[3], glmm_fmadd(glmm_load(m[2]), glmm_set1(z), glmm_load(m[3])));
#else
vec4 v1;
glm_vec4_scale(m[2], z, v1);
glm_vec4_add(v1, m[3], m[3]);
#endif
}
/*!
* @brief rotate existing transform matrix around X axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
CGLM_INLINE
void
glm_rotate_x(mat4 m, float angle, mat4 dest) {
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
c = cosf(angle);
s = sinf(angle);
t[1][1] = c;
t[1][2] = s;
t[2][1] = -s;
t[2][2] = c;
glm_mul_rot(m, t, dest);
}
/*!
* @brief rotate existing transform matrix around Y axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
CGLM_INLINE
void
glm_rotate_y(mat4 m, float angle, mat4 dest) {
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
c = cosf(angle);
s = sinf(angle);
t[0][0] = c;
t[0][2] = -s;
t[2][0] = s;
t[2][2] = c;
glm_mul_rot(m, t, dest);
}
/*!
* @brief rotate existing transform matrix around Z axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
CGLM_INLINE
void
glm_rotate_z(mat4 m, float angle, mat4 dest) {
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
c = cosf(angle);
s = sinf(angle);
t[0][0] = c;
t[0][1] = s;
t[1][0] = -s;
t[1][1] = c;
glm_mul_rot(m, t, dest);
}
/*!
* @brief rotate existing transform matrix around given axis by angle
*
* @param[in, out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_rotate(mat4 m, float angle, vec3 axis) {
CGLM_ALIGN_MAT mat4 rot;
glm_rotate_make(rot, angle, axis);
glm_mul_rot(m, rot, m);
}
/*!
* @brief rotate existing transform
* around given axis by angle at given pivot point (rotation center)
*
* @param[in, out] m affine transfrom
* @param[in] pivot rotation center
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis) {
CGLM_ALIGN(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translate(m, pivot);
glm_rotate(m, angle, axis);
glm_translate(m, pivotInv);
}
/*!
* @brief creates NEW rotation matrix by angle and axis at given point
*
* this creates rotation matrix, it assumes you don't have a matrix
*
* this should work faster than glm_rotate_at because it reduces
* one glm_translate.
*
* @param[out] m affine transfrom
* @param[in] pivot rotation center
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis) {
CGLM_ALIGN(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translate_make(m, pivot);
glm_rotate(m, angle, axis);
glm_translate(m, pivotInv);
}
/*!
* @brief rotate existing transform matrix around given axis by angle around self (doesn't affected by position)
*
* @param[in, out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_spin(mat4 m, float angle, vec3 axis) {
CGLM_ALIGN_MAT mat4 rot;
glm_rotate_atm(rot, m[3], angle, axis);
glm_mat4_mul(m, rot, m);
}
#endif /* cglm_affine_pre_h */

238
include/cglm/affine.h Normal file
View File

@ -0,0 +1,238 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_translate_to(mat4 m, vec3 v, mat4 dest);
CGLM_INLINE void glm_translate(mat4 m, vec3 v);
CGLM_INLINE void glm_translate_x(mat4 m, float to);
CGLM_INLINE void glm_translate_y(mat4 m, float to);
CGLM_INLINE void glm_translate_z(mat4 m, float to);
CGLM_INLINE void glm_translate_make(mat4 m, vec3 v);
CGLM_INLINE void glm_scale_to(mat4 m, vec3 v, mat4 dest);
CGLM_INLINE void glm_scale_make(mat4 m, vec3 v);
CGLM_INLINE void glm_scale(mat4 m, vec3 v);
CGLM_INLINE void glm_scale_uni(mat4 m, float s);
CGLM_INLINE void glm_rotate_x(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_y(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_z(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_make(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotate(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_INLINE void glm_spin(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_decompose_scalev(mat4 m, vec3 s);
CGLM_INLINE bool glm_uniscaled(mat4 m);
CGLM_INLINE void glm_decompose_rs(mat4 m, mat4 r, vec3 s);
CGLM_INLINE void glm_decompose(mat4 m, vec4 t, mat4 r, vec3 s);
*/
#ifndef cglm_affine_h
#define cglm_affine_h
#include "common.h"
#include "util.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
#include "affine-mat.h"
/*!
* @brief creates NEW translate transform matrix by v vector
*
* @param[out] m affine transfrom
* @param[in] v translate vector [x, y, z]
*/
CGLM_INLINE
void
glm_translate_make(mat4 m, vec3 v) {
glm_mat4_identity(m);
glm_vec3_copy(v, m[3]);
}
/*!
* @brief scale existing transform matrix by v vector
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] v scale vector [x, y, z]
* @param[out] dest scaled matrix
*/
CGLM_INLINE
void
glm_scale_to(mat4 m, vec3 v, mat4 dest) {
glm_vec4_scale(m[0], v[0], dest[0]);
glm_vec4_scale(m[1], v[1], dest[1]);
glm_vec4_scale(m[2], v[2], dest[2]);
glm_vec4_copy(m[3], dest[3]);
}
/*!
* @brief creates NEW scale matrix by v vector
*
* @param[out] m affine transfrom
* @param[in] v scale vector [x, y, z]
*/
CGLM_INLINE
void
glm_scale_make(mat4 m, vec3 v) {
glm_mat4_identity(m);
m[0][0] = v[0];
m[1][1] = v[1];
m[2][2] = v[2];
}
/*!
* @brief scales existing transform matrix by v vector
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] v scale vector [x, y, z]
*/
CGLM_INLINE
void
glm_scale(mat4 m, vec3 v) {
glm_scale_to(m, v, m);
}
/*!
* @brief applies uniform scale to existing transform matrix v = [s, s, s]
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] s scale factor
*/
CGLM_INLINE
void
glm_scale_uni(mat4 m, float s) {
CGLM_ALIGN(8) vec3 v = { s, s, s };
glm_scale_to(m, v, m);
}
/*!
* @brief creates NEW rotation matrix by angle and axis
*
* axis will be normalized so you don't need to normalize it
*
* @param[out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_rotate_make(mat4 m, float angle, vec3 axis) {
CGLM_ALIGN(8) vec3 axisn, v, vs;
float c;
c = cosf(angle);
glm_vec3_normalize_to(axis, axisn);
glm_vec3_scale(axisn, 1.0f - c, v);
glm_vec3_scale(axisn, sinf(angle), vs);
glm_vec3_scale(axisn, v[0], m[0]);
glm_vec3_scale(axisn, v[1], m[1]);
glm_vec3_scale(axisn, v[2], m[2]);
m[0][0] += c; m[1][0] -= vs[2]; m[2][0] += vs[1];
m[0][1] += vs[2]; m[1][1] += c; m[2][1] -= vs[0];
m[0][2] -= vs[1]; m[1][2] += vs[0]; m[2][2] += c;
m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0f;
m[3][3] = 1.0f;
}
/*!
* @brief decompose scale vector
*
* @param[in] m affine transform
* @param[out] s scale vector (Sx, Sy, Sz)
*/
CGLM_INLINE
void
glm_decompose_scalev(mat4 m, vec3 s) {
s[0] = glm_vec3_norm(m[0]);
s[1] = glm_vec3_norm(m[1]);
s[2] = glm_vec3_norm(m[2]);
}
/*!
* @brief returns true if matrix is uniform scaled. This is helpful for
* creating normal matrix.
*
* @param[in] m m
*
* @return boolean
*/
CGLM_INLINE
bool
glm_uniscaled(mat4 m) {
CGLM_ALIGN(8) vec3 s;
glm_decompose_scalev(m, s);
return glm_vec3_eq_all(s);
}
/*!
* @brief decompose rotation matrix (mat4) and scale vector [Sx, Sy, Sz]
* DON'T pass projected matrix here
*
* @param[in] m affine transform
* @param[out] r rotation matrix
* @param[out] s scale matrix
*/
CGLM_INLINE
void
glm_decompose_rs(mat4 m, mat4 r, vec3 s) {
CGLM_ALIGN(16) vec4 t = {0.0f, 0.0f, 0.0f, 1.0f};
CGLM_ALIGN(8) vec3 v;
glm_vec4_copy(m[0], r[0]);
glm_vec4_copy(m[1], r[1]);
glm_vec4_copy(m[2], r[2]);
glm_vec4_copy(t, r[3]);
s[0] = glm_vec3_norm(m[0]);
s[1] = glm_vec3_norm(m[1]);
s[2] = glm_vec3_norm(m[2]);
glm_vec4_scale(r[0], 1.0f/s[0], r[0]);
glm_vec4_scale(r[1], 1.0f/s[1], r[1]);
glm_vec4_scale(r[2], 1.0f/s[2], r[2]);
/* Note from Apple Open Source (assume that the matrix is orthonormal):
check for a coordinate system flip. If the determinant
is -1, then negate the matrix and the scaling factors. */
glm_vec3_cross(m[0], m[1], v);
if (glm_vec3_dot(v, m[2]) < 0.0f) {
glm_vec4_negate(r[0]);
glm_vec4_negate(r[1]);
glm_vec4_negate(r[2]);
glm_vec3_negate(s);
}
}
/*!
* @brief decompose affine transform, TODO: extract shear factors.
* DON'T pass projected matrix here
*
* @param[in] m affine transfrom
* @param[out] t translation vector
* @param[out] r rotation matrix (mat4)
* @param[out] s scaling vector [X, Y, Z]
*/
CGLM_INLINE
void
glm_decompose(mat4 m, vec4 t, mat4 r, vec3 s) {
glm_vec4_copy(m[3], t);
glm_decompose_rs(m, r, s);
}
#include "affine-pre.h"
#include "affine-post.h"
#endif /* cglm_affine_h */

268
include/cglm/affine2d.h Normal file
View File

@ -0,0 +1,268 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_translate2d(mat3 m, vec2 v)
CGLM_INLINE void glm_translate2d_to(mat3 m, vec2 v, mat3 dest)
CGLM_INLINE void glm_translate2d_x(mat3 m, float x)
CGLM_INLINE void glm_translate2d_y(mat3 m, float y)
CGLM_INLINE void glm_translate2d_make(mat3 m, vec2 v)
CGLM_INLINE void glm_scale2d_to(mat3 m, vec2 v, mat3 dest)
CGLM_INLINE void glm_scale2d_make(mat3 m, vec2 v)
CGLM_INLINE void glm_scale2d(mat3 m, vec2 v)
CGLM_INLINE void glm_scale2d_uni(mat3 m, float s)
CGLM_INLINE void glm_rotate2d_make(mat3 m, float angle)
CGLM_INLINE void glm_rotate2d(mat3 m, float angle)
CGLM_INLINE void glm_rotate2d_to(mat3 m, float angle, mat3 dest)
*/
#ifndef cglm_affine2d_h
#define cglm_affine2d_h
#include "common.h"
#include "util.h"
#include "vec2.h"
#include "mat3.h"
/*!
* @brief translate existing 2d transform matrix by v vector
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] v translate vector [x, y]
*/
CGLM_INLINE
void
glm_translate2d(mat3 m, vec2 v) {
m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0];
m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1];
m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2];
}
/*!
* @brief translate existing 2d transform matrix by v vector
* and store result in dest
*
* source matrix will remain same
*
* @param[in] m affine transfrom
* @param[in] v translate vector [x, y]
* @param[out] dest translated matrix
*/
CGLM_INLINE
void
glm_translate2d_to(mat3 m, vec2 v, mat3 dest) {
glm_mat3_copy(m, dest);
glm_translate2d(dest, v);
}
/*!
* @brief translate existing 2d transform matrix by x factor
*
* @param[in, out] m affine transfrom
* @param[in] x x factor
*/
CGLM_INLINE
void
glm_translate2d_x(mat3 m, float x) {
m[2][0] = m[0][0] * x + m[2][0];
m[2][1] = m[0][1] * x + m[2][1];
m[2][2] = m[0][2] * x + m[2][2];
}
/*!
* @brief translate existing 2d transform matrix by y factor
*
* @param[in, out] m affine transfrom
* @param[in] y y factor
*/
CGLM_INLINE
void
glm_translate2d_y(mat3 m, float y) {
m[2][0] = m[1][0] * y + m[2][0];
m[2][1] = m[1][1] * y + m[2][1];
m[2][2] = m[1][2] * y + m[2][2];
}
/*!
* @brief creates NEW translate 2d transform matrix by v vector
*
* @param[out] m affine transfrom
* @param[in] v translate vector [x, y]
*/
CGLM_INLINE
void
glm_translate2d_make(mat3 m, vec2 v) {
glm_mat3_identity(m);
m[2][0] = v[0];
m[2][1] = v[1];
}
/*!
* @brief scale existing 2d transform matrix by v vector
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] v scale vector [x, y]
* @param[out] dest scaled matrix
*/
CGLM_INLINE
void
glm_scale2d_to(mat3 m, vec2 v, mat3 dest) {
dest[0][0] = m[0][0] * v[0];
dest[0][1] = m[0][1] * v[0];
dest[0][2] = m[0][2] * v[0];
dest[1][0] = m[1][0] * v[1];
dest[1][1] = m[1][1] * v[1];
dest[1][2] = m[1][2] * v[1];
dest[2][0] = m[2][0];
dest[2][1] = m[2][1];
dest[2][2] = m[2][2];
}
/*!
* @brief creates NEW 2d scale matrix by v vector
*
* @param[out] m affine transfrom
* @param[in] v scale vector [x, y]
*/
CGLM_INLINE
void
glm_scale2d_make(mat3 m, vec2 v) {
glm_mat3_identity(m);
m[0][0] = v[0];
m[1][1] = v[1];
}
/*!
* @brief scales existing 2d transform matrix by v vector
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] v scale vector [x, y]
*/
CGLM_INLINE
void
glm_scale2d(mat3 m, vec2 v) {
m[0][0] = m[0][0] * v[0];
m[0][1] = m[0][1] * v[0];
m[0][2] = m[0][2] * v[0];
m[1][0] = m[1][0] * v[1];
m[1][1] = m[1][1] * v[1];
m[1][2] = m[1][2] * v[1];
}
/*!
* @brief applies uniform scale to existing 2d transform matrix v = [s, s]
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] s scale factor
*/
CGLM_INLINE
void
glm_scale2d_uni(mat3 m, float s) {
m[0][0] = m[0][0] * s;
m[0][1] = m[0][1] * s;
m[0][2] = m[0][2] * s;
m[1][0] = m[1][0] * s;
m[1][1] = m[1][1] * s;
m[1][2] = m[1][2] * s;
}
/*!
* @brief creates NEW rotation matrix by angle around Z axis
*
* @param[out] m affine transfrom
* @param[in] angle angle (radians)
*/
CGLM_INLINE
void
glm_rotate2d_make(mat3 m, float angle) {
float c, s;
s = sinf(angle);
c = cosf(angle);
m[0][0] = c;
m[0][1] = s;
m[0][2] = 0;
m[1][0] = -s;
m[1][1] = c;
m[1][2] = 0;
m[2][0] = 0.0f;
m[2][1] = 0.0f;
m[2][2] = 1.0f;
}
/*!
* @brief rotate existing 2d transform matrix around Z axis by angle
* and store result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] angle angle (radians)
*/
CGLM_INLINE
void
glm_rotate2d(mat3 m, float angle) {
float m00 = m[0][0], m10 = m[1][0],
m01 = m[0][1], m11 = m[1][1],
m02 = m[0][2], m12 = m[1][2];
float c, s;
s = sinf(angle);
c = cosf(angle);
m[0][0] = m00 * c + m10 * s;
m[0][1] = m01 * c + m11 * s;
m[0][2] = m02 * c + m12 * s;
m[1][0] = m00 * -s + m10 * c;
m[1][1] = m01 * -s + m11 * c;
m[1][2] = m02 * -s + m12 * c;
}
/*!
* @brief rotate existing 2d transform matrix around Z axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_rotate2d_to(mat3 m, float angle, mat3 dest) {
float m00 = m[0][0], m10 = m[1][0],
m01 = m[0][1], m11 = m[1][1],
m02 = m[0][2], m12 = m[1][2];
float c, s;
s = sinf(angle);
c = cosf(angle);
dest[0][0] = m00 * c + m10 * s;
dest[0][1] = m01 * c + m11 * s;
dest[0][2] = m02 * c + m12 * s;
dest[1][0] = m00 * -s + m10 * c;
dest[1][1] = m01 * -s + m11 * c;
dest[1][2] = m02 * -s + m12 * c;
dest[2][0] = m[2][0];
dest[2][1] = m[2][1];
dest[2][2] = m[2][2];
}
#endif /* cglm_affine2d_h */

95
include/cglm/applesimd.h Normal file
View File

@ -0,0 +1,95 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_applesimd_h
#define cglm_applesimd_h
#if defined(__APPLE__) \
&& defined(SIMD_COMPILER_HAS_REQUIRED_FEATURES) \
&& defined(SIMD_BASE) \
&& defined(SIMD_TYPES) \
&& defined(SIMD_VECTOR_TYPES)
#include "common.h"
/*!
* @brief converts mat4 to Apple's simd type simd_float4x4
* @return simd_float4x4
*/
CGLM_INLINE
simd_float4x4
glm_mat4_applesimd(mat4 m) {
simd_float4x4 t;
t.columns[0][0] = m[0][0];
t.columns[0][1] = m[0][1];
t.columns[0][2] = m[0][2];
t.columns[0][3] = m[0][3];
t.columns[1][0] = m[1][0];
t.columns[1][1] = m[1][1];
t.columns[1][2] = m[1][2];
t.columns[1][3] = m[1][3];
t.columns[2][0] = m[2][0];
t.columns[2][1] = m[2][1];
t.columns[2][2] = m[2][2];
t.columns[2][3] = m[2][3];
t.columns[3][0] = m[3][0];
t.columns[3][1] = m[3][1];
t.columns[3][2] = m[3][2];
t.columns[3][3] = m[3][3];
return t;
}
/*!
* @brief converts mat3 to Apple's simd type simd_float3x3
* @return simd_float3x3
*/
CGLM_INLINE
simd_float3x3
glm_mat3_applesimd(mat3 m) {
simd_float3x3 t;
t.columns[0][0] = m[0][0];
t.columns[0][1] = m[0][1];
t.columns[0][2] = m[0][2];
t.columns[1][0] = m[1][0];
t.columns[1][1] = m[1][1];
t.columns[1][2] = m[1][2];
t.columns[2][0] = m[2][0];
t.columns[2][1] = m[2][1];
t.columns[2][2] = m[2][2];
return t;
}
/*!
* @brief converts vec4 to Apple's simd type simd_float4
* @return simd_float4
*/
CGLM_INLINE
simd_float4
glm_vec4_applesimd(vec4 v) {
return (simd_float4){v[0], v[1], v[2], v[3]};
}
/*!
* @brief converts vec3 to Apple's simd type simd_float3
* @return v
*/
CGLM_INLINE
simd_float3
glm_vec3_applesimd(vec3 v) {
return (simd_float3){v[0], v[1], v[2]};
}
#endif
#endif /* cglm_applesimd_h */

154
include/cglm/bezier.h Normal file
View File

@ -0,0 +1,154 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_bezier_h
#define cglm_bezier_h
#include "common.h"
#define GLM_BEZIER_MAT_INIT {{-1.0f, 3.0f, -3.0f, 1.0f}, \
{ 3.0f, -6.0f, 3.0f, 0.0f}, \
{-3.0f, 3.0f, 0.0f, 0.0f}, \
{ 1.0f, 0.0f, 0.0f, 0.0f}}
#define GLM_HERMITE_MAT_INIT {{ 2.0f, -3.0f, 0.0f, 1.0f}, \
{-2.0f, 3.0f, 0.0f, 0.0f}, \
{ 1.0f, -2.0f, 1.0f, 0.0f}, \
{ 1.0f, -1.0f, 0.0f, 0.0f}}
/* for C only */
#define GLM_BEZIER_MAT ((mat4)GLM_BEZIER_MAT_INIT)
#define GLM_HERMITE_MAT ((mat4)GLM_HERMITE_MAT_INIT)
#define CGLM_DECASTEL_EPS 1e-9f
#define CGLM_DECASTEL_MAX 1000.0f
#define CGLM_DECASTEL_SMALL 1e-20f
/*!
* @brief cubic bezier interpolation
*
* Formula:
* B(s) = P0*(1-s)^3 + 3*C0*s*(1-s)^2 + 3*C1*s^2*(1-s) + P1*s^3
*
* similar result using matrix:
* B(s) = glm_smc(t, GLM_BEZIER_MAT, (vec4){p0, c0, c1, p1})
*
* glm_eq(glm_smc(...), glm_bezier(...)) should return TRUE
*
* @param[in] s parameter between 0 and 1
* @param[in] p0 begin point
* @param[in] c0 control point 1
* @param[in] c1 control point 2
* @param[in] p1 end point
*
* @return B(s)
*/
CGLM_INLINE
float
glm_bezier(float s, float p0, float c0, float c1, float p1) {
float x, xx, ss, xs3, a;
x = 1.0f - s;
xx = x * x;
ss = s * s;
xs3 = (s - ss) * 3.0f;
a = p0 * xx + c0 * xs3;
return a + s * (c1 * xs3 + p1 * ss - a);
}
/*!
* @brief cubic hermite interpolation
*
* Formula:
* H(s) = P0*(2*s^3 - 3*s^2 + 1) + T0*(s^3 - 2*s^2 + s)
* + P1*(-2*s^3 + 3*s^2) + T1*(s^3 - s^2)
*
* similar result using matrix:
* H(s) = glm_smc(t, GLM_HERMITE_MAT, (vec4){p0, p1, c0, c1})
*
* glm_eq(glm_smc(...), glm_hermite(...)) should return TRUE
*
* @param[in] s parameter between 0 and 1
* @param[in] p0 begin point
* @param[in] t0 tangent 1
* @param[in] t1 tangent 2
* @param[in] p1 end point
*
* @return H(s)
*/
CGLM_INLINE
float
glm_hermite(float s, float p0, float t0, float t1, float p1) {
float ss, d, a, b, c, e, f;
ss = s * s;
a = ss + ss;
c = a + ss;
b = a * s;
d = s * ss;
f = d - ss;
e = b - c;
return p0 * (e + 1.0f) + t0 * (f - ss + s) + t1 * f - p1 * e;
}
/*!
* @brief iterative way to solve cubic equation
*
* @param[in] prm parameter between 0 and 1
* @param[in] p0 begin point
* @param[in] c0 control point 1
* @param[in] c1 control point 2
* @param[in] p1 end point
*
* @return parameter to use in cubic equation
*/
CGLM_INLINE
float
glm_decasteljau(float prm, float p0, float c0, float c1, float p1) {
float u, v, a, b, c, d, e, f;
int i;
if (prm - p0 < CGLM_DECASTEL_SMALL)
return 0.0f;
if (p1 - prm < CGLM_DECASTEL_SMALL)
return 1.0f;
u = 0.0f;
v = 1.0f;
for (i = 0; i < CGLM_DECASTEL_MAX; i++) {
/* de Casteljau Subdivision */
a = (p0 + c0) * 0.5f;
b = (c0 + c1) * 0.5f;
c = (c1 + p1) * 0.5f;
d = (a + b) * 0.5f;
e = (b + c) * 0.5f;
f = (d + e) * 0.5f; /* this one is on the curve! */
/* The curve point is close enough to our wanted t */
if (fabsf(f - prm) < CGLM_DECASTEL_EPS)
return glm_clamp_zo((u + v) * 0.5f);
/* dichotomy */
if (f < prm) {
p0 = f;
c0 = e;
c1 = c;
u = (u + v) * 0.5f;
} else {
c0 = a;
c1 = d;
p1 = f;
v = (u + v) * 0.5f;
}
}
return glm_clamp_zo((u + v) * 0.5f);
}
#endif /* cglm_bezier_h */

281
include/cglm/box.h Normal file
View File

@ -0,0 +1,281 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_box_h
#define cglm_box_h
#include "common.h"
#include "vec3.h"
#include "vec4.h"
#include "util.h"
/*!
* @brief apply transform to Axis-Aligned Bounding Box
*
* @param[in] box bounding box
* @param[in] m transform matrix
* @param[out] dest transformed bounding box
*/
CGLM_INLINE
void
glm_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]) {
vec3 v[2], xa, xb, ya, yb, za, zb;
glm_vec3_scale(m[0], box[0][0], xa);
glm_vec3_scale(m[0], box[1][0], xb);
glm_vec3_scale(m[1], box[0][1], ya);
glm_vec3_scale(m[1], box[1][1], yb);
glm_vec3_scale(m[2], box[0][2], za);
glm_vec3_scale(m[2], box[1][2], zb);
/* translation + min(xa, xb) + min(ya, yb) + min(za, zb) */
glm_vec3(m[3], v[0]);
glm_vec3_minadd(xa, xb, v[0]);
glm_vec3_minadd(ya, yb, v[0]);
glm_vec3_minadd(za, zb, v[0]);
/* translation + max(xa, xb) + max(ya, yb) + max(za, zb) */
glm_vec3(m[3], v[1]);
glm_vec3_maxadd(xa, xb, v[1]);
glm_vec3_maxadd(ya, yb, v[1]);
glm_vec3_maxadd(za, zb, v[1]);
glm_vec3_copy(v[0], dest[0]);
glm_vec3_copy(v[1], dest[1]);
}
/*!
* @brief merges two AABB bounding box and creates new one
*
* two box must be in same space, if one of box is in different space then
* you should consider to convert it's space by glm_box_space
*
* @param[in] box1 bounding box 1
* @param[in] box2 bounding box 2
* @param[out] dest merged bounding box
*/
CGLM_INLINE
void
glm_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2]) {
dest[0][0] = glm_min(box1[0][0], box2[0][0]);
dest[0][1] = glm_min(box1[0][1], box2[0][1]);
dest[0][2] = glm_min(box1[0][2], box2[0][2]);
dest[1][0] = glm_max(box1[1][0], box2[1][0]);
dest[1][1] = glm_max(box1[1][1], box2[1][1]);
dest[1][2] = glm_max(box1[1][2], box2[1][2]);
}
/*!
* @brief crops a bounding box with another one.
*
* this could be useful for gettng a bbox which fits with view frustum and
* object bounding boxes. In this case you crop view frustum box with objects
* box
*
* @param[in] box bounding box 1
* @param[in] cropBox crop box
* @param[out] dest cropped bounding box
*/
CGLM_INLINE
void
glm_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2]) {
dest[0][0] = glm_max(box[0][0], cropBox[0][0]);
dest[0][1] = glm_max(box[0][1], cropBox[0][1]);
dest[0][2] = glm_max(box[0][2], cropBox[0][2]);
dest[1][0] = glm_min(box[1][0], cropBox[1][0]);
dest[1][1] = glm_min(box[1][1], cropBox[1][1]);
dest[1][2] = glm_min(box[1][2], cropBox[1][2]);
}
/*!
* @brief crops a bounding box with another one.
*
* this could be useful for gettng a bbox which fits with view frustum and
* object bounding boxes. In this case you crop view frustum box with objects
* box
*
* @param[in] box bounding box
* @param[in] cropBox crop box
* @param[in] clampBox miniumum box
* @param[out] dest cropped bounding box
*/
CGLM_INLINE
void
glm_aabb_crop_until(vec3 box[2],
vec3 cropBox[2],
vec3 clampBox[2],
vec3 dest[2]) {
glm_aabb_crop(box, cropBox, dest);
glm_aabb_merge(clampBox, dest, dest);
}
/*!
* @brief check if AABB intersects with frustum planes
*
* this could be useful for frustum culling using AABB.
*
* OPTIMIZATION HINT:
* if planes order is similar to LEFT, RIGHT, BOTTOM, TOP, NEAR, FAR
* then this method should run even faster because it would only use two
* planes if object is not inside the two planes
* fortunately cglm extracts planes as this order! just pass what you got!
*
* @param[in] box bounding box
* @param[in] planes frustum planes
*/
CGLM_INLINE
bool
glm_aabb_frustum(vec3 box[2], vec4 planes[6]) {
float *p, dp;
int i;
for (i = 0; i < 6; i++) {
p = planes[i];
dp = p[0] * box[p[0] > 0.0f][0]
+ p[1] * box[p[1] > 0.0f][1]
+ p[2] * box[p[2] > 0.0f][2];
if (dp < -p[3])
return false;
}
return true;
}
/*!
* @brief invalidate AABB min and max values
*
* @param[in, out] box bounding box
*/
CGLM_INLINE
void
glm_aabb_invalidate(vec3 box[2]) {
glm_vec3_broadcast(FLT_MAX, box[0]);
glm_vec3_broadcast(-FLT_MAX, box[1]);
}
/*!
* @brief check if AABB is valid or not
*
* @param[in] box bounding box
*/
CGLM_INLINE
bool
glm_aabb_isvalid(vec3 box[2]) {
return glm_vec3_max(box[0]) != FLT_MAX
&& glm_vec3_min(box[1]) != -FLT_MAX;
}
/*!
* @brief distance between of min and max
*
* @param[in] box bounding box
*/
CGLM_INLINE
float
glm_aabb_size(vec3 box[2]) {
return glm_vec3_distance(box[0], box[1]);
}
/*!
* @brief radius of sphere which surrounds AABB
*
* @param[in] box bounding box
*/
CGLM_INLINE
float
glm_aabb_radius(vec3 box[2]) {
return glm_aabb_size(box) * 0.5f;
}
/*!
* @brief computes center point of AABB
*
* @param[in] box bounding box
* @param[out] dest center of bounding box
*/
CGLM_INLINE
void
glm_aabb_center(vec3 box[2], vec3 dest) {
glm_vec3_center(box[0], box[1], dest);
}
/*!
* @brief check if two AABB intersects
*
* @param[in] box bounding box
* @param[in] other other bounding box
*/
CGLM_INLINE
bool
glm_aabb_aabb(vec3 box[2], vec3 other[2]) {
return (box[0][0] <= other[1][0] && box[1][0] >= other[0][0])
&& (box[0][1] <= other[1][1] && box[1][1] >= other[0][1])
&& (box[0][2] <= other[1][2] && box[1][2] >= other[0][2]);
}
/*!
* @brief check if AABB intersects with sphere
*
* https://github.com/erich666/GraphicsGems/blob/master/gems/BoxSphere.c
* Solid Box - Solid Sphere test.
*
* Sphere Representation in cglm: [center.x, center.y, center.z, radii]
*
* @param[in] box solid bounding box
* @param[in] s solid sphere
*/
CGLM_INLINE
bool
glm_aabb_sphere(vec3 box[2], vec4 s) {
float dmin;
int a, b, c;
a = (s[0] < box[0][0]) + (s[0] > box[1][0]);
b = (s[1] < box[0][1]) + (s[1] > box[1][1]);
c = (s[2] < box[0][2]) + (s[2] > box[1][2]);
dmin = glm_pow2((s[0] - box[!(a - 1)][0]) * (a != 0))
+ glm_pow2((s[1] - box[!(b - 1)][1]) * (b != 0))
+ glm_pow2((s[2] - box[!(c - 1)][2]) * (c != 0));
return dmin <= glm_pow2(s[3]);
}
/*!
* @brief check if point is inside of AABB
*
* @param[in] box bounding box
* @param[in] point point
*/
CGLM_INLINE
bool
glm_aabb_point(vec3 box[2], vec3 point) {
return (point[0] >= box[0][0] && point[0] <= box[1][0])
&& (point[1] >= box[0][1] && point[1] <= box[1][1])
&& (point[2] >= box[0][2] && point[2] <= box[1][2]);
}
/*!
* @brief check if AABB contains other AABB
*
* @param[in] box bounding box
* @param[in] other other bounding box
*/
CGLM_INLINE
bool
glm_aabb_contains(vec3 box[2], vec3 other[2]) {
return (box[0][0] <= other[0][0] && box[1][0] >= other[1][0])
&& (box[0][1] <= other[0][1] && box[1][1] >= other[1][1])
&& (box[0][2] <= other[0][2] && box[1][2] >= other[1][2]);
}
#endif /* cglm_box_h */

43
include/cglm/call.h Normal file
View File

@ -0,0 +1,43 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_call_h
#define cglm_call_h
#ifdef __cplusplus
extern "C" {
#endif
#include "cglm.h"
#include "call/vec2.h"
#include "call/vec3.h"
#include "call/vec4.h"
#include "call/ivec2.h"
#include "call/ivec3.h"
#include "call/ivec4.h"
#include "call/mat2.h"
#include "call/mat3.h"
#include "call/mat4.h"
#include "call/affine.h"
#include "call/cam.h"
#include "call/quat.h"
#include "call/euler.h"
#include "call/plane.h"
#include "call/frustum.h"
#include "call/box.h"
#include "call/io.h"
#include "call/project.h"
#include "call/sphere.h"
#include "call/ease.h"
#include "call/curve.h"
#include "call/bezier.h"
#include "call/ray.h"
#include "call/affine2d.h"
#ifdef __cplusplus
}
#endif
#endif /* cglm_call_h */

167
include/cglm/call/affine.h Normal file
View File

@ -0,0 +1,167 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_affine_h
#define cglmc_affine_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_translate_make(mat4 m, vec3 v);
CGLM_EXPORT
void
glmc_translate_to(mat4 m, vec3 v, mat4 dest);
CGLM_EXPORT
void
glmc_translate(mat4 m, vec3 v);
CGLM_EXPORT
void
glmc_translate_x(mat4 m, float to);
CGLM_EXPORT
void
glmc_translate_y(mat4 m, float to);
CGLM_EXPORT
void
glmc_translate_z(mat4 m, float to);
CGLM_EXPORT
void
glmc_scale_make(mat4 m, vec3 v);
CGLM_EXPORT
void
glmc_scale_to(mat4 m, vec3 v, mat4 dest);
CGLM_EXPORT
void
glmc_scale(mat4 m, vec3 v);
CGLM_EXPORT
void
glmc_scale_uni(mat4 m, float s);
CGLM_EXPORT
void
glmc_rotate_x(mat4 m, float rad, mat4 dest);
CGLM_EXPORT
void
glmc_rotate_y(mat4 m, float rad, mat4 dest);
CGLM_EXPORT
void
glmc_rotate_z(mat4 m, float rad, mat4 dest);
CGLM_EXPORT
void
glmc_rotate_make(mat4 m, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_rotate(mat4 m, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_spin(mat4 m, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_decompose_scalev(mat4 m, vec3 s);
CGLM_EXPORT
bool
glmc_uniscaled(mat4 m);
CGLM_EXPORT
void
glmc_decompose_rs(mat4 m, mat4 r, vec3 s);
CGLM_EXPORT
void
glmc_decompose(mat4 m, vec4 t, mat4 r, vec3 s);
/* affine-post */
CGLM_EXPORT
void
glmc_translated(mat4 m, vec3 v);
CGLM_EXPORT
void
glmc_translated_to(mat4 m, vec3 v, mat4 dest);
CGLM_EXPORT
void
glmc_translated_x(mat4 m, float x);
CGLM_EXPORT
void
glmc_translated_y(mat4 m, float y);
CGLM_EXPORT
void
glmc_translated_z(mat4 m, float z);
CGLM_EXPORT
void
glmc_rotated_x(mat4 m, float angle, mat4 dest);
CGLM_EXPORT
void
glmc_rotated_y(mat4 m, float angle, mat4 dest);
CGLM_EXPORT
void
glmc_rotated_z(mat4 m, float angle, mat4 dest);
CGLM_EXPORT
void
glmc_rotated(mat4 m, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_rotated_at(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_spinned(mat4 m, float angle, vec3 axis);
/* affine-mat */
CGLM_EXPORT
void
glmc_mul(mat4 m1, mat4 m2, mat4 dest);
CGLM_EXPORT
void
glmc_mul_rot(mat4 m1, mat4 m2, mat4 dest);
CGLM_EXPORT
void
glmc_inv_tr(mat4 mat);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_affine_h */

View File

@ -0,0 +1,67 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_affine2d_h
#define cglmc_affine2d_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_translate2d_make(mat3 m, vec2 v);
CGLM_EXPORT
void
glmc_translate2d_to(mat3 m, vec2 v, mat3 dest);
CGLM_EXPORT
void
glmc_translate2d(mat3 m, vec2 v);
CGLM_EXPORT
void
glmc_translate2d_x(mat3 m, float to);
CGLM_EXPORT
void
glmc_translate2d_y(mat3 m, float to);
CGLM_EXPORT
void
glmc_scale2d_to(mat3 m, vec2 v, mat3 dest);
CGLM_EXPORT
void
glmc_scale2d_make(mat3 m, vec2 v);
CGLM_EXPORT
void
glmc_scale2d(mat3 m, vec2 v);
CGLM_EXPORT
void
glmc_scale2d_uni(mat3 m, float s);
CGLM_EXPORT
void
glmc_rotate2d_make(mat3 m, float angle);
CGLM_EXPORT
void
glmc_rotate2d(mat3 m, float angle);
CGLM_EXPORT
void
glmc_rotate2d_to(mat3 m, float angle, mat3 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_affine2d_h */

View File

@ -0,0 +1,31 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_bezier_h
#define cglmc_bezier_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
float
glmc_bezier(float s, float p0, float c0, float c1, float p1);
CGLM_EXPORT
float
glmc_hermite(float s, float p0, float t0, float t1, float p1);
CGLM_EXPORT
float
glmc_decasteljau(float prm, float p0, float c0, float c1, float p1);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_bezier_h */

79
include/cglm/call/box.h Normal file
View File

@ -0,0 +1,79 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_box_h
#define cglmc_box_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]);
CGLM_EXPORT
void
glmc_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2]);
CGLM_EXPORT
void
glmc_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2]);
CGLM_EXPORT
void
glmc_aabb_crop_until(vec3 box[2],
vec3 cropBox[2],
vec3 clampBox[2],
vec3 dest[2]);
CGLM_EXPORT
bool
glmc_aabb_frustum(vec3 box[2], vec4 planes[6]);
CGLM_EXPORT
void
glmc_aabb_invalidate(vec3 box[2]);
CGLM_EXPORT
bool
glmc_aabb_isvalid(vec3 box[2]);
CGLM_EXPORT
float
glmc_aabb_size(vec3 box[2]);
CGLM_EXPORT
float
glmc_aabb_radius(vec3 box[2]);
CGLM_EXPORT
void
glmc_aabb_center(vec3 box[2], vec3 dest);
CGLM_EXPORT
bool
glmc_aabb_aabb(vec3 box[2], vec3 other[2]);
CGLM_EXPORT
bool
glmc_aabb_point(vec3 box[2], vec3 point);
CGLM_EXPORT
bool
glmc_aabb_contains(vec3 box[2], vec3 other[2]);
CGLM_EXPORT
bool
glmc_aabb_sphere(vec3 box[2], vec4 s);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_box_h */

133
include/cglm/call/cam.h Normal file
View File

@ -0,0 +1,133 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_cam_h
#define cglmc_cam_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_frustum(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_ortho(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb(vec3 box[2], mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_p(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default(float aspect, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_s(float aspect, float size, mat4 dest);
CGLM_EXPORT
void
glmc_perspective(float fovy, float aspect, float nearZ, float farZ, mat4 dest);
CGLM_EXPORT
void
glmc_persp_move_far(mat4 proj, float deltaFar);
CGLM_EXPORT
void
glmc_perspective_default(float aspect, mat4 dest);
CGLM_EXPORT
void
glmc_perspective_resize(float aspect, mat4 proj);
CGLM_EXPORT
void
glmc_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look(vec3 eye, vec3 dir, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_anyup(vec3 eye, vec3 dir, mat4 dest);
CGLM_EXPORT
void
glmc_persp_decomp(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decompv(mat4 proj, float dest[6]);
CGLM_EXPORT
void
glmc_persp_decomp_x(mat4 proj,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decomp_y(mat4 proj,
float * __restrict top,
float * __restrict bottom);
CGLM_EXPORT
void
glmc_persp_decomp_z(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_far(mat4 proj, float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_near(mat4 proj, float * __restrict nearZ);
CGLM_EXPORT
float
glmc_persp_fovy(mat4 proj);
CGLM_EXPORT
float
glmc_persp_aspect(mat4 proj);
CGLM_EXPORT
void
glmc_persp_sizes(mat4 proj, float fovy, vec4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_cam_h */

View File

@ -0,0 +1,46 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ortho_lh_no_h
#define cglmc_ortho_lh_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_ortho_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_lh_no(vec3 box[2], mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_p_lh_no(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_pz_lh_no(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_lh_no(float aspect, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_s_lh_no(float aspect, float size, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ortho_lh_no_h */

View File

@ -0,0 +1,46 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ortho_lh_zo_h
#define cglmc_ortho_lh_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_ortho_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_lh_zo(vec3 box[2], mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_p_lh_zo(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_pz_lh_zo(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_lh_zo(float aspect, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_s_lh_zo(float aspect, float size, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ortho_lh_zo_h */

View File

@ -0,0 +1,46 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ortho_rh_no_h
#define cglmc_ortho_rh_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_ortho_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_rh_no(vec3 box[2], mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_p_rh_no(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_pz_rh_no(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_rh_no(float aspect, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_s_rh_no(float aspect, float size, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ortho_rh_no_h */

View File

@ -0,0 +1,46 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ortho_rh_zo_h
#define cglmc_ortho_rh_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_ortho_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_rh_zo(vec3 box[2], mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_p_rh_zo(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_pz_rh_zo(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_rh_zo(float aspect, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_s_rh_zo(float aspect, float size, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ortho_rh_zo_h */

View File

@ -0,0 +1,87 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_persp_lh_no_h
#define cglmc_persp_lh_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_frustum_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_perspective_lh_no(float fovy,
float aspect,
float nearVal,
float farVal,
mat4 dest);
CGLM_EXPORT
void
glmc_persp_move_far_lh_no(mat4 proj, float deltaFar);
CGLM_EXPORT
void
glmc_persp_decomp_lh_no(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decompv_lh_no(mat4 proj, float dest[6]);
CGLM_EXPORT
void
glmc_persp_decomp_x_lh_no(mat4 proj,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decomp_y_lh_no(mat4 proj,
float * __restrict top,
float * __restrict bottom);
CGLM_EXPORT
void
glmc_persp_decomp_z_lh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_far_lh_no(mat4 proj, float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_near_lh_no(mat4 proj, float * __restrict nearZ);
CGLM_EXPORT
void
glmc_persp_sizes_lh_no(mat4 proj, float fovy, vec4 dest);
CGLM_EXPORT
float
glmc_persp_fovy_lh_no(mat4 proj);
CGLM_EXPORT
float
glmc_persp_aspect_lh_no(mat4 proj);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_persp_lh_no_h */

View File

@ -0,0 +1,87 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_persp_lh_zo_h
#define cglmc_persp_lh_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_frustum_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_perspective_lh_zo(float fovy,
float aspect,
float nearVal,
float farVal,
mat4 dest);
CGLM_EXPORT
void
glmc_persp_move_far_lh_zo(mat4 proj, float deltaFar);
CGLM_EXPORT
void
glmc_persp_decomp_lh_zo(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decompv_lh_zo(mat4 proj, float dest[6]);
CGLM_EXPORT
void
glmc_persp_decomp_x_lh_zo(mat4 proj,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decomp_y_lh_zo(mat4 proj,
float * __restrict top,
float * __restrict bottom);
CGLM_EXPORT
void
glmc_persp_decomp_z_lh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_far_lh_zo(mat4 proj, float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_near_lh_zo(mat4 proj, float * __restrict nearZ);
CGLM_EXPORT
void
glmc_persp_sizes_lh_zo(mat4 proj, float fovy, vec4 dest);
CGLM_EXPORT
float
glmc_persp_fovy_lh_zo(mat4 proj);
CGLM_EXPORT
float
glmc_persp_aspect_lh_zo(mat4 proj);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_persp_lh_zo_h */

View File

@ -0,0 +1,87 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_persp_rh_no_h
#define cglmc_persp_rh_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_frustum_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_perspective_rh_no(float fovy,
float aspect,
float nearVal,
float farVal,
mat4 dest);
CGLM_EXPORT
void
glmc_persp_move_far_rh_no(mat4 proj, float deltaFar);
CGLM_EXPORT
void
glmc_persp_decomp_rh_no(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decompv_rh_no(mat4 proj, float dest[6]);
CGLM_EXPORT
void
glmc_persp_decomp_x_rh_no(mat4 proj,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decomp_y_rh_no(mat4 proj,
float * __restrict top,
float * __restrict bottom);
CGLM_EXPORT
void
glmc_persp_decomp_z_rh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_far_rh_no(mat4 proj, float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_near_rh_no(mat4 proj, float * __restrict nearZ);
CGLM_EXPORT
void
glmc_persp_sizes_rh_no(mat4 proj, float fovy, vec4 dest);
CGLM_EXPORT
float
glmc_persp_fovy_rh_no(mat4 proj);
CGLM_EXPORT
float
glmc_persp_aspect_rh_no(mat4 proj);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_persp_rh_no_h */

View File

@ -0,0 +1,87 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_persp_rh_zo_h
#define cglmc_persp_rh_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_frustum_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_perspective_rh_zo(float fovy,
float aspect,
float nearVal,
float farVal,
mat4 dest);
CGLM_EXPORT
void
glmc_persp_move_far_rh_zo(mat4 proj, float deltaFar);
CGLM_EXPORT
void
glmc_persp_decomp_rh_zo(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decompv_rh_zo(mat4 proj, float dest[6]);
CGLM_EXPORT
void
glmc_persp_decomp_x_rh_zo(mat4 proj,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decomp_y_rh_zo(mat4 proj,
float * __restrict top,
float * __restrict bottom);
CGLM_EXPORT
void
glmc_persp_decomp_z_rh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_far_rh_zo(mat4 proj, float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_near_rh_zo(mat4 proj, float * __restrict nearZ);
CGLM_EXPORT
void
glmc_persp_sizes_rh_zo(mat4 proj, float fovy, vec4 dest);
CGLM_EXPORT
float
glmc_persp_fovy_rh_zo(mat4 proj);
CGLM_EXPORT
float
glmc_persp_aspect_rh_zo(mat4 proj);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_persp_rh_zo_h */

View File

@ -0,0 +1,31 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_project_no_h
#define cglmc_project_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_unprojecti_no(vec3 pos, mat4 invMat, vec4 vp, vec3 dest);
CGLM_EXPORT
void
glmc_project_no(vec3 pos, mat4 m, vec4 vp, vec3 dest);
CGLM_EXPORT
float
glmc_project_z_no(vec3 pos, mat4 m);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_project_no_h */

View File

@ -0,0 +1,31 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_project_zo_h
#define cglmc_project_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_unprojecti_zo(vec3 pos, mat4 invMat, vec4 vp, vec3 dest);
CGLM_EXPORT
void
glmc_project_zo(vec3 pos, mat4 m, vec4 vp, vec3 dest);
CGLM_EXPORT
float
glmc_project_z_zo(vec3 pos, mat4 m);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_project_zo_h */

View File

@ -0,0 +1,31 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_view_lh_no_h
#define cglmc_view_lh_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_lookat_lh_no(vec3 eye, vec3 center, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_lh_no(vec3 eye, vec3 dir, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_anyup_lh_no(vec3 eye, vec3 dir, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_view_lh_no_h */

View File

@ -0,0 +1,31 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_view_lh_zo_h
#define cglmc_view_lh_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_lookat_lh_zo(vec3 eye, vec3 center, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_lh_zo(vec3 eye, vec3 dir, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_anyup_lh_zo(vec3 eye, vec3 dir, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_view_lh_zo_h */

View File

@ -0,0 +1,31 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_view_rh_no_h
#define cglmc_view_rh_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_lookat_rh_no(vec3 eye, vec3 center, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_rh_no(vec3 eye, vec3 dir, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_anyup_rh_no(vec3 eye, vec3 dir, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_view_rh_no_h */

View File

@ -0,0 +1,31 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_view_rh_zo_h
#define cglmc_view_rh_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_lookat_rh_zo(vec3 eye, vec3 center, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_rh_zo(vec3 eye, vec3 dir, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_anyup_rh_zo(vec3 eye, vec3 dir, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_view_rh_zo_h */

23
include/cglm/call/curve.h Normal file
View File

@ -0,0 +1,23 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_curve_h
#define cglmc_curve_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
float
glmc_smc(float s, mat4 m, vec4 c);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_curve_h */

143
include/cglm/call/ease.h Normal file
View File

@ -0,0 +1,143 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ease_h
#define cglmc_ease_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
float
glmc_ease_linear(float t);
CGLM_EXPORT
float
glmc_ease_sine_in(float t);
CGLM_EXPORT
float
glmc_ease_sine_out(float t);
CGLM_EXPORT
float
glmc_ease_sine_inout(float t);
CGLM_EXPORT
float
glmc_ease_quad_in(float t);
CGLM_EXPORT
float
glmc_ease_quad_out(float t);
CGLM_EXPORT
float
glmc_ease_quad_inout(float t);
CGLM_EXPORT
float
glmc_ease_cubic_in(float t);
CGLM_EXPORT
float
glmc_ease_cubic_out(float t);
CGLM_EXPORT
float
glmc_ease_cubic_inout(float t);
CGLM_EXPORT
float
glmc_ease_quart_in(float t);
CGLM_EXPORT
float
glmc_ease_quart_out(float t);
CGLM_EXPORT
float
glmc_ease_quart_inout(float t);
CGLM_EXPORT
float
glmc_ease_quint_in(float t);
CGLM_EXPORT
float
glmc_ease_quint_out(float t);
CGLM_EXPORT
float
glmc_ease_quint_inout(float t);
CGLM_EXPORT
float
glmc_ease_exp_in(float t);
CGLM_EXPORT
float
glmc_ease_exp_out(float t);
CGLM_EXPORT
float
glmc_ease_exp_inout(float t);
CGLM_EXPORT
float
glmc_ease_circ_in(float t);
CGLM_EXPORT
float
glmc_ease_circ_out(float t);
CGLM_EXPORT
float
glmc_ease_circ_inout(float t);
CGLM_EXPORT
float
glmc_ease_back_in(float t);
CGLM_EXPORT
float
glmc_ease_back_out(float t);
CGLM_EXPORT
float
glmc_ease_back_inout(float t);
CGLM_EXPORT
float
glmc_ease_elast_in(float t);
CGLM_EXPORT
float
glmc_ease_elast_out(float t);
CGLM_EXPORT
float
glmc_ease_elast_inout(float t);
CGLM_EXPORT
float
glmc_ease_bounce_out(float t);
CGLM_EXPORT
float
glmc_ease_bounce_in(float t);
CGLM_EXPORT
float
glmc_ease_bounce_inout(float t);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ease_h */

55
include/cglm/call/euler.h Normal file
View File

@ -0,0 +1,55 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_euler_h
#define cglmc_euler_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_euler_angles(mat4 m, vec3 dest);
CGLM_EXPORT
void
glmc_euler(vec3 angles, mat4 dest);
CGLM_EXPORT
void
glmc_euler_xyz(vec3 angles, mat4 dest);
CGLM_EXPORT
void
glmc_euler_zyx(vec3 angles, mat4 dest);
CGLM_EXPORT
void
glmc_euler_zxy(vec3 angles, mat4 dest);
CGLM_EXPORT
void
glmc_euler_xzy(vec3 angles, mat4 dest);
CGLM_EXPORT
void
glmc_euler_yzx(vec3 angles, mat4 dest);
CGLM_EXPORT
void
glmc_euler_yxz(vec3 angles, mat4 dest);
CGLM_EXPORT
void
glmc_euler_by_order(vec3 angles, glm_euler_seq axis, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_euler_h */

View File

@ -0,0 +1,41 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_frustum_h
#define cglmc_frustum_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_frustum_planes(mat4 m, vec4 dest[6]);
CGLM_EXPORT
void
glmc_frustum_corners(mat4 invMat, vec4 dest[8]);
CGLM_EXPORT
void
glmc_frustum_center(vec4 corners[8], vec4 dest);
CGLM_EXPORT
void
glmc_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]);
CGLM_EXPORT
void
glmc_frustum_corners_at(vec4 corners[8],
float splitDist,
float farDist,
vec4 planeCorners[4]);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_frustum_h */

45
include/cglm/call/io.h Normal file
View File

@ -0,0 +1,45 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_io_h
#define cglmc_io_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_mat4_print(mat4 matrix,
FILE * __restrict ostream);
CGLM_EXPORT
void
glmc_mat3_print(mat3 matrix,
FILE * __restrict ostream);
CGLM_EXPORT
void
glmc_vec4_print(vec4 vec,
FILE * __restrict ostream);
CGLM_EXPORT
void
glmc_vec3_print(vec3 vec,
FILE * __restrict ostream);
CGLM_EXPORT
void
glmc_versor_print(versor vec,
FILE * __restrict ostream);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_io_h */

83
include/cglm/call/ivec2.h Normal file
View File

@ -0,0 +1,83 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ivec2_h
#define cglmc_ivec2_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_ivec2(int * __restrict v, ivec2 dest);
CGLM_EXPORT
void
glmc_ivec2_copy(ivec2 a, ivec2 dest);
CGLM_EXPORT
void
glmc_ivec2_zero(ivec2 v);
CGLM_EXPORT
void
glmc_ivec2_one(ivec2 v);
CGLM_EXPORT
void
glmc_ivec2_add(ivec2 a, ivec2 b, ivec2 dest);
CGLM_EXPORT
void
glmc_ivec2_adds(ivec2 v, int s, ivec2 dest);
CGLM_EXPORT
void
glmc_ivec2_sub(ivec2 a, ivec2 b, ivec2 dest);
CGLM_EXPORT
void
glmc_ivec2_subs(ivec2 v, int s, ivec2 dest);
CGLM_EXPORT
void
glmc_ivec2_mul(ivec2 a, ivec2 b, ivec2 dest);
CGLM_EXPORT
void
glmc_ivec2_scale(ivec2 v, int s, ivec2 dest);
CGLM_EXPORT
int
glmc_ivec2_distance2(ivec2 a, ivec2 b);
CGLM_EXPORT
float
glmc_ivec2_distance(ivec2 a, ivec2 b);
CGLM_EXPORT
void
glmc_ivec2_maxv(ivec2 a, ivec2 b, ivec2 dest);
CGLM_EXPORT
void
glmc_ivec2_minv(ivec2 a, ivec2 b, ivec2 dest);
CGLM_EXPORT
void
glmc_ivec2_clamp(ivec2 v, int minVal, int maxVal);
CGLM_EXPORT
void
glmc_ivec2_abs(ivec2 v, ivec2 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ivec2_h */

83
include/cglm/call/ivec3.h Normal file
View File

@ -0,0 +1,83 @@
/*
* Copyright (c);, Recep Aslantas.
*
* MIT License (MIT);, http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ivec3_h
#define cglmc_ivec3_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_ivec3(ivec4 v4, ivec3 dest);
CGLM_EXPORT
void
glmc_ivec3_copy(ivec3 a, ivec3 dest);
CGLM_EXPORT
void
glmc_ivec3_zero(ivec3 v);
CGLM_EXPORT
void
glmc_ivec3_one(ivec3 v);
CGLM_EXPORT
void
glmc_ivec3_add(ivec3 a, ivec3 b, ivec3 dest);
CGLM_EXPORT
void
glmc_ivec3_adds(ivec3 v, int s, ivec3 dest);
CGLM_EXPORT
void
glmc_ivec3_sub(ivec3 a, ivec3 b, ivec3 dest);
CGLM_EXPORT
void
glmc_ivec3_subs(ivec3 v, int s, ivec3 dest);
CGLM_EXPORT
void
glmc_ivec3_mul(ivec3 a, ivec3 b, ivec3 dest);
CGLM_EXPORT
void
glmc_ivec3_scale(ivec3 v, int s, ivec3 dest);
CGLM_EXPORT
int
glmc_ivec3_distance2(ivec3 a, ivec3 b);
CGLM_EXPORT
float
glmc_ivec3_distance(ivec3 a, ivec3 b);
CGLM_EXPORT
void
glmc_ivec3_maxv(ivec3 a, ivec3 b, ivec3 dest);
CGLM_EXPORT
void
glmc_ivec3_minv(ivec3 a, ivec3 b, ivec3 dest);
CGLM_EXPORT
void
glmc_ivec3_clamp(ivec3 v, int minVal, int maxVal);
CGLM_EXPORT
void
glmc_ivec3_abs(ivec3 v, ivec3 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ivec3_h */

83
include/cglm/call/ivec4.h Normal file
View File

@ -0,0 +1,83 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ivec4_h
#define cglmc_ivec4_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_ivec4(ivec3 v3, int last, ivec4 dest);
CGLM_EXPORT
void
glmc_ivec4_copy(ivec4 a, ivec4 dest);
CGLM_EXPORT
void
glmc_ivec4_zero(ivec4 v);
CGLM_EXPORT
void
glmc_ivec4_one(ivec4 v);
CGLM_EXPORT
void
glmc_ivec4_add(ivec4 a, ivec4 b, ivec4 dest);
CGLM_EXPORT
void
glmc_ivec4_adds(ivec4 v, int s, ivec4 dest);
CGLM_EXPORT
void
glmc_ivec4_sub(ivec4 a, ivec4 b, ivec4 dest);
CGLM_EXPORT
void
glmc_ivec4_subs(ivec4 v, int s, ivec4 dest);
CGLM_EXPORT
void
glmc_ivec4_mul(ivec4 a, ivec4 b, ivec4 dest);
CGLM_EXPORT
void
glmc_ivec4_scale(ivec4 v, int s, ivec4 dest);
CGLM_EXPORT
int
glmc_ivec4_distance2(ivec4 a, ivec4 b);
CGLM_EXPORT
float
glmc_ivec4_distance(ivec4 a, ivec4 b);
CGLM_EXPORT
void
glmc_ivec4_maxv(ivec4 a, ivec4 b, ivec4 dest);
CGLM_EXPORT
void
glmc_ivec4_minv(ivec4 a, ivec4 b, ivec4 dest);
CGLM_EXPORT
void
glmc_ivec4_clamp(ivec4 v, int minVal, int maxVal);
CGLM_EXPORT
void
glmc_ivec4_abs(ivec4 v, ivec4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ivec4_h */

79
include/cglm/call/mat2.h Normal file
View File

@ -0,0 +1,79 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_mat2_h
#define cglmc_mat2_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_mat2_copy(mat2 mat, mat2 dest);
CGLM_EXPORT
void
glmc_mat2_identity(mat2 mat);
CGLM_EXPORT
void
glmc_mat2_identity_array(mat2 * __restrict mat, size_t count);
CGLM_EXPORT
void
glmc_mat2_zero(mat2 mat);
CGLM_EXPORT
void
glmc_mat2_mul(mat2 m1, mat2 m2, mat2 dest);
CGLM_EXPORT
void
glmc_mat2_transpose_to(mat2 m, mat2 dest);
CGLM_EXPORT
void
glmc_mat2_transpose(mat2 m);
CGLM_EXPORT
void
glmc_mat2_mulv(mat2 m, vec2 v, vec2 dest);
CGLM_EXPORT
float
glmc_mat2_trace(mat2 m);
CGLM_EXPORT
void
glmc_mat2_scale(mat2 m, float s);
CGLM_EXPORT
float
glmc_mat2_det(mat2 mat);
CGLM_EXPORT
void
glmc_mat2_inv(mat2 mat, mat2 dest);
CGLM_EXPORT
void
glmc_mat2_swap_col(mat2 mat, int col1, int col2);
CGLM_EXPORT
void
glmc_mat2_swap_row(mat2 mat, int row1, int row2);
CGLM_EXPORT
float
glmc_mat2_rmc(vec2 r, mat2 m, vec2 c);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_mat2_h */

86
include/cglm/call/mat3.h Normal file
View File

@ -0,0 +1,86 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_mat3_h
#define cglmc_mat3_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
/* DEPRECATED! use _copy, _ucopy versions */
#define glmc_mat3_dup(mat, dest) glmc_mat3_copy(mat, dest)
CGLM_EXPORT
void
glmc_mat3_copy(mat3 mat, mat3 dest);
CGLM_EXPORT
void
glmc_mat3_identity(mat3 mat);
CGLM_EXPORT
void
glmc_mat3_zero(mat3 mat);
CGLM_EXPORT
void
glmc_mat3_identity_array(mat3 * __restrict mat, size_t count);
CGLM_EXPORT
void
glmc_mat3_mul(mat3 m1, mat3 m2, mat3 dest);
CGLM_EXPORT
void
glmc_mat3_transpose_to(mat3 m, mat3 dest);
CGLM_EXPORT
void
glmc_mat3_transpose(mat3 m);
CGLM_EXPORT
void
glmc_mat3_mulv(mat3 m, vec3 v, vec3 dest);
CGLM_EXPORT
float
glmc_mat3_trace(mat3 m);
CGLM_EXPORT
void
glmc_mat3_quat(mat3 m, versor dest);
CGLM_EXPORT
void
glmc_mat3_scale(mat3 m, float s);
CGLM_EXPORT
float
glmc_mat3_det(mat3 mat);
CGLM_EXPORT
void
glmc_mat3_inv(mat3 mat, mat3 dest);
CGLM_EXPORT
void
glmc_mat3_swap_col(mat3 mat, int col1, int col2);
CGLM_EXPORT
void
glmc_mat3_swap_row(mat3 mat, int row1, int row2);
CGLM_EXPORT
float
glmc_mat3_rmc(vec3 r, mat3 m, vec3 c);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_mat3_h */

127
include/cglm/call/mat4.h Normal file
View File

@ -0,0 +1,127 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_mat_h
#define cglmc_mat_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
/* DEPRECATED! use _copy, _ucopy versions */
#define glmc_mat4_udup(mat, dest) glmc_mat4_ucopy(mat, dest)
#define glmc_mat4_dup(mat, dest) glmc_mat4_copy(mat, dest)
CGLM_EXPORT
void
glmc_mat4_ucopy(mat4 mat, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_copy(mat4 mat, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_identity(mat4 mat);
CGLM_EXPORT
void
glmc_mat4_identity_array(mat4 * __restrict mat, size_t count);
CGLM_EXPORT
void
glmc_mat4_zero(mat4 mat);
CGLM_EXPORT
void
glmc_mat4_pick3(mat4 mat, mat3 dest);
CGLM_EXPORT
void
glmc_mat4_pick3t(mat4 mat, mat3 dest);
CGLM_EXPORT
void
glmc_mat4_ins3(mat3 mat, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_mul(mat4 m1, mat4 m2, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_mulv(mat4 m, vec4 v, vec4 dest);
CGLM_EXPORT
void
glmc_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest);
CGLM_EXPORT
float
glmc_mat4_trace(mat4 m);
CGLM_EXPORT
float
glmc_mat4_trace3(mat4 m);
CGLM_EXPORT
void
glmc_mat4_quat(mat4 m, versor dest);
CGLM_EXPORT
void
glmc_mat4_transpose_to(mat4 m, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_transpose(mat4 m);
CGLM_EXPORT
void
glmc_mat4_scale_p(mat4 m, float s);
CGLM_EXPORT
void
glmc_mat4_scale(mat4 m, float s);
CGLM_EXPORT
float
glmc_mat4_det(mat4 mat);
CGLM_EXPORT
void
glmc_mat4_inv(mat4 mat, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_inv_precise(mat4 mat, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_inv_fast(mat4 mat, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_swap_col(mat4 mat, int col1, int col2);
CGLM_EXPORT
void
glmc_mat4_swap_row(mat4 mat, int row1, int row2);
CGLM_EXPORT
float
glmc_mat4_rmc(vec4 r, mat4 m, vec4 c);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_mat_h */

23
include/cglm/call/plane.h Normal file
View File

@ -0,0 +1,23 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_plane_h
#define cglmc_plane_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_plane_normalize(vec4 plane);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_plane_h */

View File

@ -0,0 +1,41 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_project_h
#define cglmc_project_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest);
CGLM_EXPORT
void
glmc_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest);
CGLM_EXPORT
void
glmc_project(vec3 pos, mat4 m, vec4 vp, vec3 dest);
CGLM_EXPORT
float
glmc_project_z(vec3 pos, mat4 m);
CGLM_EXPORT
void
glmc_pickmatrix(vec2 center, vec2 size, vec4 vp, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_project_h */

167
include/cglm/call/quat.h Normal file
View File

@ -0,0 +1,167 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_quat_h
#define cglmc_quat_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_quat_identity(versor q);
CGLM_EXPORT
void
glmc_quat_identity_array(versor * __restrict q, size_t count);
CGLM_EXPORT
void
glmc_quat_init(versor q, float x, float y, float z, float w);
CGLM_EXPORT
void
glmc_quat(versor q, float angle, float x, float y, float z);
CGLM_EXPORT
void
glmc_quatv(versor q, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_quat_copy(versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_from_vecs(vec3 a, vec3 b, versor dest);
CGLM_EXPORT
float
glmc_quat_norm(versor q);
CGLM_EXPORT
void
glmc_quat_normalize_to(versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_normalize(versor q);
CGLM_EXPORT
float
glmc_quat_dot(versor p, versor q);
CGLM_EXPORT
void
glmc_quat_conjugate(versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_inv(versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_add(versor p, versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_sub(versor p, versor q, versor dest);
CGLM_EXPORT
float
glmc_quat_real(versor q);
CGLM_EXPORT
void
glmc_quat_imag(versor q, vec3 dest);
CGLM_EXPORT
void
glmc_quat_imagn(versor q, vec3 dest);
CGLM_EXPORT
float
glmc_quat_imaglen(versor q);
CGLM_EXPORT
float
glmc_quat_angle(versor q);
CGLM_EXPORT
void
glmc_quat_axis(versor q, vec3 dest);
CGLM_EXPORT
void
glmc_quat_mul(versor p, versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_mat4(versor q, mat4 dest);
CGLM_EXPORT
void
glmc_quat_mat4t(versor q, mat4 dest);
CGLM_EXPORT
void
glmc_quat_mat3(versor q, mat3 dest);
CGLM_EXPORT
void
glmc_quat_mat3t(versor q, mat3 dest);
CGLM_EXPORT
void
glmc_quat_lerp(versor from, versor to, float t, versor dest);
CGLM_EXPORT
void
glmc_quat_lerpc(versor from, versor to, float t, versor dest);
CGLM_EXPORT
void
glmc_quat_nlerp(versor q, versor r, float t, versor dest);
CGLM_EXPORT
void
glmc_quat_slerp(versor q, versor r, float t, versor dest);
CGLM_EXPORT
void
glmc_quat_look(vec3 eye, versor ori, mat4 dest);
CGLM_EXPORT
void
glmc_quat_for(vec3 dir, vec3 up, versor dest);
CGLM_EXPORT
void
glmc_quat_forp(vec3 from, vec3 to, vec3 up, versor dest);
CGLM_EXPORT
void
glmc_quat_rotatev(versor from, vec3 to, vec3 dest);
CGLM_EXPORT
void
glmc_quat_rotate(mat4 m, versor q, mat4 dest);
CGLM_EXPORT
void
glmc_quat_rotate_at(mat4 model, versor q, vec3 pivot);
CGLM_EXPORT
void
glmc_quat_rotate_atm(mat4 m, versor q, vec3 pivot);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_quat_h */

27
include/cglm/call/ray.h Normal file
View File

@ -0,0 +1,27 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ray_h
#define cglmc_ray_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
bool
glmc_ray_triangle(vec3 origin,
vec3 direction,
vec3 v0,
vec3 v1,
vec3 v2,
float *d);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ray_h */

View File

@ -0,0 +1,39 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_sphere_h
#define cglmc_sphere_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
float
glmc_sphere_radii(vec4 s);
CGLM_EXPORT
void
glmc_sphere_transform(vec4 s, mat4 m, vec4 dest);
CGLM_EXPORT
void
glmc_sphere_merge(vec4 s1, vec4 s2, vec4 dest);
CGLM_EXPORT
bool
glmc_sphere_sphere(vec4 s1, vec4 s2);
CGLM_EXPORT
bool
glmc_sphere_point(vec4 s, vec3 point);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_sphere_h */

171
include/cglm/call/vec2.h Normal file
View File

@ -0,0 +1,171 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_vec2_h
#define cglmc_vec2_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_vec2(float * __restrict v, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_copy(vec2 a, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_zero(vec2 v);
CGLM_EXPORT
void
glmc_vec2_one(vec2 v);
CGLM_EXPORT
float
glmc_vec2_dot(vec2 a, vec2 b);
CGLM_EXPORT
float
glmc_vec2_cross(vec2 a, vec2 b);
CGLM_EXPORT
float
glmc_vec2_norm2(vec2 v);
CGLM_EXPORT
float
glmc_vec2_norm(vec2 v);
CGLM_EXPORT
void
glmc_vec2_add(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_adds(vec2 v, float s, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_sub(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_subs(vec2 v, float s, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_mul(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_scale(vec2 v, float s, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_scale_as(vec2 v, float s, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_div(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_divs(vec2 v, float s, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_addadd(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_subadd(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_muladd(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_muladds(vec2 a, float s, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_maxadd(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_minadd(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_negate_to(vec2 v, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_negate(vec2 v);
CGLM_EXPORT
void
glmc_vec2_normalize(vec2 v);
CGLM_EXPORT
void
glmc_vec2_normalize_to(vec2 v, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_rotate(vec2 v, float angle, vec2 dest);
CGLM_EXPORT
float
glmc_vec2_distance2(vec2 a, vec2 b);
CGLM_EXPORT
float
glmc_vec2_distance(vec2 a, vec2 b);
CGLM_EXPORT
void
glmc_vec2_maxv(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_minv(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_clamp(vec2 v, float minval, float maxval);
CGLM_EXPORT
void
glmc_vec2_abs(vec2 v, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_lerp(vec2 from, vec2 to, float t, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_complex_mul(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_complex_div(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_complex_conjugate(vec2 a, vec2 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_vec2_h */

312
include/cglm/call/vec3.h Normal file
View File

@ -0,0 +1,312 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_vec3_h
#define cglmc_vec3_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
/* DEPRECATED! use _copy, _ucopy versions */
#define glmc_vec_dup(v, dest) glmc_vec3_copy(v, dest)
#define glmc_vec3_flipsign(v) glmc_vec3_negate(v)
#define glmc_vec3_flipsign_to(v, dest) glmc_vec3_negate_to(v, dest)
#define glmc_vec3_inv(v) glmc_vec3_negate(v)
#define glmc_vec3_inv_to(v, dest) glmc_vec3_negate_to(v, dest)
CGLM_EXPORT
void
glmc_vec3(vec4 v4, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_copy(vec3 a, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_zero(vec3 v);
CGLM_EXPORT
void
glmc_vec3_one(vec3 v);
CGLM_EXPORT
float
glmc_vec3_dot(vec3 a, vec3 b);
CGLM_EXPORT
void
glmc_vec3_cross(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_crossn(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
float
glmc_vec3_norm(vec3 v);
CGLM_EXPORT
float
glmc_vec3_norm2(vec3 v);
CGLM_EXPORT
float
glmc_vec3_norm_one(vec3 v);
CGLM_EXPORT
float
glmc_vec3_norm_inf(vec3 v);
CGLM_EXPORT
void
glmc_vec3_normalize_to(vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_normalize(vec3 v);
CGLM_EXPORT
void
glmc_vec3_add(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_adds(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_sub(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_subs(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_mul(vec3 a, vec3 b, vec3 d);
CGLM_EXPORT
void
glmc_vec3_scale(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_scale_as(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_div(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_divs(vec3 a, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_addadd(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_subadd(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_muladd(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_muladds(vec3 a, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_maxadd(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_minadd(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_negate(vec3 v);
CGLM_EXPORT
void
glmc_vec3_negate_to(vec3 v, vec3 dest);
CGLM_EXPORT
float
glmc_vec3_angle(vec3 a, vec3 b);
CGLM_EXPORT
void
glmc_vec3_rotate(vec3 v, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_proj(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_center(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
float
glmc_vec3_distance2(vec3 a, vec3 b);
CGLM_EXPORT
float
glmc_vec3_distance(vec3 a, vec3 b);
CGLM_EXPORT
void
glmc_vec3_maxv(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_minv(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_clamp(vec3 v, float minVal, float maxVal);
CGLM_EXPORT
void
glmc_vec3_ortho(vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_lerpc(vec3 from, vec3 to, float t, vec3 dest);
CGLM_INLINE
void
glmc_vec3_mix(vec3 from, vec3 to, float t, vec3 dest) {
glmc_vec3_lerp(from, to, t, dest);
}
CGLM_INLINE
void
glmc_vec3_mixc(vec3 from, vec3 to, float t, vec3 dest) {
glmc_vec3_lerpc(from, to, t, dest);
}
CGLM_EXPORT
void
glmc_vec3_step_uni(float edge, vec3 x, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_step(vec3 edge, vec3 x, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_smoothstep_uni(float edge0, float edge1, vec3 x, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_smoothstep(vec3 edge0, vec3 edge1, vec3 x, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_smoothinterp(vec3 from, vec3 to, float t, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_smoothinterpc(vec3 from, vec3 to, float t, vec3 dest);
/* ext */
CGLM_EXPORT
void
glmc_vec3_mulv(vec3 a, vec3 b, vec3 d);
CGLM_EXPORT
void
glmc_vec3_broadcast(float val, vec3 d);
CGLM_EXPORT
void
glmc_vec3_fill(vec3 v, float val);
CGLM_EXPORT
bool
glmc_vec3_eq(vec3 v, float val);
CGLM_EXPORT
bool
glmc_vec3_eq_eps(vec3 v, float val);
CGLM_EXPORT
bool
glmc_vec3_eq_all(vec3 v);
CGLM_EXPORT
bool
glmc_vec3_eqv(vec3 a, vec3 b);
CGLM_EXPORT
bool
glmc_vec3_eqv_eps(vec3 a, vec3 b);
CGLM_EXPORT
float
glmc_vec3_max(vec3 v);
CGLM_EXPORT
float
glmc_vec3_min(vec3 v);
CGLM_EXPORT
bool
glmc_vec3_isnan(vec3 v);
CGLM_EXPORT
bool
glmc_vec3_isinf(vec3 v);
CGLM_EXPORT
bool
glmc_vec3_isvalid(vec3 v);
CGLM_EXPORT
void
glmc_vec3_sign(vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_abs(vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_fract(vec3 v, vec3 dest);
CGLM_EXPORT
float
glmc_vec3_hadd(vec3 v);
CGLM_EXPORT
void
glmc_vec3_sqrt(vec3 v, vec3 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_vec3_h */

290
include/cglm/call/vec4.h Normal file
View File

@ -0,0 +1,290 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_vec4_h
#define cglmc_vec4_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
/* DEPRECATED! use _copy, _ucopy versions */
#define glmc_vec4_dup3(v, dest) glmc_vec4_copy3(v, dest)
#define glmc_vec4_dup(v, dest) glmc_vec4_copy(v, dest)
#define glmc_vec4_flipsign(v) glmc_vec4_negate(v)
#define glmc_vec4_flipsign_to(v, dest) glmc_vec4_negate_to(v, dest)
#define glmc_vec4_inv(v) glmc_vec4_negate(v)
#define glmc_vec4_inv_to(v, dest) glmc_vec4_negate_to(v, dest)
CGLM_EXPORT
void
glmc_vec4(vec3 v3, float last, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_zero(vec4 v);
CGLM_EXPORT
void
glmc_vec4_one(vec4 v);
CGLM_EXPORT
void
glmc_vec4_copy3(vec4 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec4_copy(vec4 v, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_ucopy(vec4 v, vec4 dest);
CGLM_EXPORT
float
glmc_vec4_dot(vec4 a, vec4 b);
CGLM_EXPORT
float
glmc_vec4_norm(vec4 v);
CGLM_EXPORT
float
glmc_vec4_norm2(vec4 v);
CGLM_EXPORT
float
glmc_vec4_norm_one(vec4 v);
CGLM_EXPORT
float
glmc_vec4_norm_inf(vec4 v);
CGLM_EXPORT
void
glmc_vec4_normalize_to(vec4 v, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_normalize(vec4 v);
CGLM_EXPORT
void
glmc_vec4_add(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_adds(vec4 v, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_sub(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_subs(vec4 v, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_mul(vec4 a, vec4 b, vec4 d);
CGLM_EXPORT
void
glmc_vec4_scale(vec4 v, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_scale_as(vec4 v, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_div(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_divs(vec4 v, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_addadd(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_subadd(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_muladd(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_muladds(vec4 a, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_maxadd(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_minadd(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_negate(vec4 v);
CGLM_EXPORT
void
glmc_vec4_negate_to(vec4 v, vec4 dest);
CGLM_EXPORT
float
glmc_vec4_distance(vec4 a, vec4 b);
CGLM_EXPORT
float
glmc_vec4_distance2(vec4 a, vec4 b);
CGLM_EXPORT
void
glmc_vec4_maxv(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_minv(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_clamp(vec4 v, float minVal, float maxVal);
CGLM_EXPORT
void
glmc_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_lerpc(vec4 from, vec4 to, float t, vec4 dest);
CGLM_INLINE
void
glmc_vec4_mix(vec4 from, vec4 to, float t, vec4 dest) {
glmc_vec4_lerp(from, to, t, dest);
}
CGLM_INLINE
void
glmc_vec4_mixc(vec4 from, vec4 to, float t, vec4 dest) {
glmc_vec4_lerpc(from, to, t, dest);
}
CGLM_EXPORT
void
glmc_vec4_step_uni(float edge, vec4 x, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_step(vec4 edge, vec4 x, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_smoothstep_uni(float edge0, float edge1, vec4 x, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_smoothstep(vec4 edge0, vec4 edge1, vec4 x, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_smoothinterp(vec4 from, vec4 to, float t, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_smoothinterpc(vec4 from, vec4 to, float t, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_cubic(float s, vec4 dest);
/* ext */
CGLM_EXPORT
void
glmc_vec4_mulv(vec4 a, vec4 b, vec4 d);
CGLM_EXPORT
void
glmc_vec4_broadcast(float val, vec4 d);
CGLM_EXPORT
void
glmc_vec4_fill(vec4 v, float val);
CGLM_EXPORT
bool
glmc_vec4_eq(vec4 v, float val);
CGLM_EXPORT
bool
glmc_vec4_eq_eps(vec4 v, float val);
CGLM_EXPORT
bool
glmc_vec4_eq_all(vec4 v);
CGLM_EXPORT
bool
glmc_vec4_eqv(vec4 a, vec4 b);
CGLM_EXPORT
bool
glmc_vec4_eqv_eps(vec4 a, vec4 b);
CGLM_EXPORT
float
glmc_vec4_max(vec4 v);
CGLM_EXPORT
float
glmc_vec4_min(vec4 v);
CGLM_EXPORT
bool
glmc_vec4_isnan(vec4 v);
CGLM_EXPORT
bool
glmc_vec4_isinf(vec4 v);
CGLM_EXPORT
bool
glmc_vec4_isvalid(vec4 v);
CGLM_EXPORT
void
glmc_vec4_sign(vec4 v, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_abs(vec4 v, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_fract(vec4 v, vec4 dest);
CGLM_EXPORT
float
glmc_vec4_hadd(vec4 v);
CGLM_EXPORT
void
glmc_vec4_sqrt(vec4 v, vec4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_vec4_h */

582
include/cglm/cam.h Normal file
View File

@ -0,0 +1,582 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_frustum(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_ortho(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb(vec3 box[2], mat4 dest)
CGLM_INLINE void glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest)
CGLM_INLINE void glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest)
CGLM_INLINE void glm_ortho_default(float aspect, mat4 dest)
CGLM_INLINE void glm_ortho_default_s(float aspect, float size, mat4 dest)
CGLM_INLINE void glm_perspective(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_default(float aspect, mat4 dest)
CGLM_INLINE void glm_perspective_resize(float aspect, mat4 proj)
CGLM_INLINE void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup(vec3 eye, vec3 dir, mat4 dest)
CGLM_INLINE void glm_persp_decomp(mat4 proj,
float *nearZ, float *farZ,
float *top, float *bottom,
float *left, float *right)
CGLM_INLINE void glm_persp_decompv(mat4 proj, float dest[6])
CGLM_INLINE void glm_persp_decomp_x(mat4 proj, float *left, float *right)
CGLM_INLINE void glm_persp_decomp_y(mat4 proj, float *top, float *bottom)
CGLM_INLINE void glm_persp_decomp_z(mat4 proj, float *nearv, float *farv)
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float *farZ)
CGLM_INLINE void glm_persp_decomp_near(mat4 proj, float *nearZ)
CGLM_INLINE float glm_persp_fovy(mat4 proj)
CGLM_INLINE float glm_persp_aspect(mat4 proj)
CGLM_INLINE void glm_persp_sizes(mat4 proj, float fovy, vec4 dest)
*/
#ifndef cglm_cam_h
#define cglm_cam_h
#include "common.h"
#include "plane.h"
#include "clipspace/persp.h"
#ifndef CGLM_CLIPSPACE_INCLUDE_ALL
# if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
# include "clipspace/ortho_lh_zo.h"
# include "clipspace/persp_lh_zo.h"
# include "clipspace/view_lh_zo.h"
# elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
# include "clipspace/ortho_lh_no.h"
# include "clipspace/persp_lh_no.h"
# include "clipspace/view_lh_no.h"
# elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
# include "clipspace/ortho_rh_zo.h"
# include "clipspace/persp_rh_zo.h"
# include "clipspace/view_rh_zo.h"
# elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
# include "clipspace/ortho_rh_no.h"
# include "clipspace/persp_rh_no.h"
# include "clipspace/view_rh_no.h"
# endif
#else
# include "clipspace/ortho_lh_zo.h"
# include "clipspace/persp_lh_zo.h"
# include "clipspace/ortho_lh_no.h"
# include "clipspace/persp_lh_no.h"
# include "clipspace/ortho_rh_zo.h"
# include "clipspace/persp_rh_zo.h"
# include "clipspace/ortho_rh_no.h"
# include "clipspace/persp_rh_no.h"
# include "clipspace/view_lh_zo.h"
# include "clipspace/view_lh_no.h"
# include "clipspace/view_rh_zo.h"
# include "clipspace/view_rh_no.h"
#endif
/*!
* @brief set up perspective peprojection matrix
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_frustum(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_frustum_lh_zo(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_frustum_lh_no(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_frustum_rh_zo(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_frustum_rh_no(left, right, bottom, top, nearZ, farZ, dest);
#endif
}
/*!
* @brief set up orthographic projection matrix
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_lh_zo(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_lh_no(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_rh_zo(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_rh_no(left, right, bottom, top, nearZ, farZ, dest);
#endif
}
/*!
* @brief set up orthographic projection matrix using bounding box
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb(vec3 box[2], mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_aabb_lh_zo(box, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_aabb_lh_no(box, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_aabb_rh_zo(box, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_aabb_rh_no(box, dest);
#endif
}
/*!
* @brief set up orthographic projection matrix using bounding box
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_aabb_p_lh_zo(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_aabb_p_lh_no(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_aabb_p_rh_zo(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_aabb_p_rh_no(box, padding, dest);
#endif
}
/*!
* @brief set up orthographic projection matrix using bounding box
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_aabb_pz_lh_zo(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_aabb_pz_lh_no(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_aabb_pz_rh_zo(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_aabb_pz_rh_no(box, padding, dest);
#endif
}
/*!
* @brief set up unit orthographic projection matrix
*
* @param[in] aspect aspect ration ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default(float aspect, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_default_lh_zo(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_default_lh_no(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_default_rh_zo(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_default_rh_no(aspect, dest);
#endif
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_s(float aspect, float size, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_default_s_lh_zo(aspect, size, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_default_s_lh_no(aspect, size, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_default_s_rh_zo(aspect, size, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_default_s_rh_no(aspect, size, dest);
#endif
}
/*!
* @brief set up perspective projection matrix
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective(float fovy, float aspect, float nearZ, float farZ, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_perspective_lh_zo(fovy, aspect, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_perspective_lh_no(fovy, aspect, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_perspective_rh_zo(fovy, aspect, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_perspective_rh_no(fovy, aspect, nearZ, farZ, dest);
#endif
}
/*!
* @brief extend perspective projection matrix's far distance
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
void
glm_persp_move_far(mat4 proj, float deltaFar) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_move_far_lh_zo(proj, deltaFar);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_move_far_lh_no(proj, deltaFar);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_move_far_rh_zo(proj, deltaFar);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_move_far_rh_no(proj, deltaFar);
#endif
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values
*
* @param[in] aspect aspect ratio ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_default(float aspect, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_perspective_default_lh_zo(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_perspective_default_lh_no(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_perspective_default_rh_zo(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_perspective_default_rh_no(aspect, dest);
#endif
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* reized
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in, out] proj perspective projection matrix
*/
CGLM_INLINE
void
glm_perspective_resize(float aspect, mat4 proj) {
if (proj[0][0] == 0.0f)
return;
proj[0][0] = proj[1][1] / aspect;
}
/*!
* @brief set up view matrix
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_LH_BIT
glm_lookat_lh(eye, center, up, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_RH_BIT
glm_lookat_rh(eye, center, up, dest);
#endif
}
/*!
* @brief set up view matrix
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_LH_BIT
glm_look_lh(eye, dir, up, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_RH_BIT
glm_look_rh(eye, dir, up, dest);
#endif
}
/*!
* @brief set up view matrix
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_LH_BIT
glm_look_anyup_lh(eye, dir, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_RH_BIT
glm_look_anyup_rh(eye, dir, dest);
#endif
}
/*!
* @brief decomposes frustum values of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_lh_zo(proj, nearZ, farZ, top, bottom, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_lh_no(proj, nearZ, farZ, top, bottom, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_rh_zo(proj, nearZ, farZ, top, bottom, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_rh_no(proj, nearZ, farZ, top, bottom, left, right);
#endif
}
/*!
* @brief decomposes frustum values of perspective projection.
* this makes easy to get all values at once
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glm_persp_decompv(mat4 proj, float dest[6]) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decompv_lh_zo(proj, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decompv_lh_no(proj, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decompv_rh_zo(proj, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decompv_rh_no(proj, dest);
#endif
}
/*!
* @brief decomposes left and right values of perspective projection.
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_x(mat4 proj,
float * __restrict left,
float * __restrict right) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_x_lh_zo(proj, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_x_lh_no(proj, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_x_rh_zo(proj, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_x_rh_no(proj, left, right);
#endif
}
/*!
* @brief decomposes top and bottom values of perspective projection.
* y stands for y axis (top / botom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glm_persp_decomp_y(mat4 proj,
float * __restrict top,
float * __restrict bottom) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_y_lh_zo(proj, top, bottom);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_y_lh_no(proj, top, bottom);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_y_rh_zo(proj, top, bottom);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_y_rh_no(proj, top, bottom);
#endif
}
/*!
* @brief decomposes near and far values of perspective projection.
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_z(mat4 proj, float * __restrict nearZ, float * __restrict farZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_z_lh_zo(proj, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_z_lh_no(proj, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_z_rh_zo(proj, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_z_rh_no(proj, nearZ, farZ);
#endif
}
/*!
* @brief decomposes far value of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_far(mat4 proj, float * __restrict farZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_far_lh_zo(proj, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_far_lh_no(proj, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_far_rh_zo(proj, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_far_rh_no(proj, farZ);
#endif
}
/*!
* @brief decomposes near value of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
CGLM_INLINE
void
glm_persp_decomp_near(mat4 proj, float * __restrict nearZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_near_lh_zo(proj, nearZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_near_lh_no(proj, nearZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_near_rh_zo(proj, nearZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_near_rh_no(proj, nearZ);
#endif
}
/*!
* @brief returns sizes of near and far planes of perspective projection
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
void
glm_persp_sizes(mat4 proj, float fovy, vec4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_sizes_lh_zo(proj, fovy, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_sizes_lh_no(proj, fovy, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_sizes_rh_zo(proj, fovy, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_sizes_rh_no(proj, fovy, dest);
#endif
}
#endif /* cglm_cam_h */

39
include/cglm/cglm.h Normal file
View File

@ -0,0 +1,39 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_h
#define cglm_h
#include "common.h"
#include "vec2.h"
#include "vec3.h"
#include "vec4.h"
#include "ivec2.h"
#include "ivec3.h"
#include "ivec4.h"
#include "mat4.h"
#include "mat3.h"
#include "mat2.h"
#include "affine.h"
#include "cam.h"
#include "frustum.h"
#include "quat.h"
#include "euler.h"
#include "plane.h"
#include "box.h"
#include "color.h"
#include "util.h"
#include "io.h"
#include "project.h"
#include "sphere.h"
#include "ease.h"
#include "curve.h"
#include "bezier.h"
#include "ray.h"
#include "affine2d.h"
#endif /* cglm_h */

View File

@ -0,0 +1,183 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_ortho_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_lh_no(vec3 box[2], mat4 dest)
CGLM_INLINE void glm_ortho_aabb_p_lh_no(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_pz_lh_no(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_default_lh_no(float aspect,
mat4 dest)
CGLM_INLINE void glm_ortho_default_s_lh_no(float aspect,
float size,
mat4 dest)
*/
#ifndef cglm_ortho_lh_no_h
#define cglm_ortho_lh_no_h
#include "../common.h"
#include "../plane.h"
#include "../mat4.h"
/*!
* @brief set up orthographic projection matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
dest[0][0] = 2.0f * rl;
dest[1][1] = 2.0f * tb;
dest[2][2] =-2.0f * fn;
dest[3][0] =-(right + left) * rl;
dest[3][1] =-(top + bottom) * tb;
dest[3][2] = (farZ + nearZ) * fn;
dest[3][3] = 1.0f;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_lh_no(vec3 box[2], mat4 dest) {
glm_ortho_lh_no(box[0][0], box[1][0],
box[0][1], box[1][1],
-box[1][2], -box[0][2],
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_p_lh_no(vec3 box[2], float padding, mat4 dest) {
glm_ortho_lh_no(box[0][0] - padding, box[1][0] + padding,
box[0][1] - padding, box[1][1] + padding,
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_pz_lh_no(vec3 box[2], float padding, mat4 dest) {
glm_ortho_lh_no(box[0][0], box[1][0],
box[0][1], box[1][1],
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up unit orthographic projection matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ration ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_lh_no(float aspect, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_lh_no(-aspect, aspect, -1.0f, 1.0f, -100.0f, 100.0f, dest);
return;
}
aspect = 1.0f / aspect;
glm_ortho_lh_no(-1.0f, 1.0f, -aspect, aspect, -100.0f, 100.0f, dest);
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_s_lh_no(float aspect, float size, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_lh_no(-size * aspect,
size * aspect,
-size,
size,
-size - 100.0f,
size + 100.0f,
dest);
return;
}
glm_ortho_lh_no(-size,
size,
-size / aspect,
size / aspect,
-size - 100.0f,
size + 100.0f,
dest);
}
#endif /*cglm_ortho_lh_no_h*/

View File

@ -0,0 +1,177 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_ortho_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_lh_zo(vec3 box[2], mat4 dest)
CGLM_INLINE void glm_ortho_aabb_p_lh_zo(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_pz_lh_zo(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_default_lh_zo(float aspect,
mat4 dest)
CGLM_INLINE void glm_ortho_default_s_lh_zo(float aspect,
float size,
mat4 dest)
*/
#ifndef cglm_ortho_lh_zo_h
#define cglm_ortho_lh_zo_h
#include "../common.h"
#include "../plane.h"
#include "../mat4.h"
/*!
* @brief set up orthographic projection matrix with a left-hand coordinate
* system and a clip-space of [0, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
dest[0][0] = 2.0f * rl;
dest[1][1] = 2.0f * tb;
dest[2][2] =-fn;
dest[3][0] =-(right + left) * rl;
dest[3][1] =-(top + bottom) * tb;
dest[3][2] = nearZ * fn;
dest[3][3] = 1.0f;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_lh_zo(vec3 box[2], mat4 dest) {
glm_ortho_lh_zo(box[0][0], box[1][0],
box[0][1], box[1][1],
-box[1][2], -box[0][2],
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_p_lh_zo(vec3 box[2], float padding, mat4 dest) {
glm_ortho_lh_zo(box[0][0] - padding, box[1][0] + padding,
box[0][1] - padding, box[1][1] + padding,
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_pz_lh_zo(vec3 box[2], float padding, mat4 dest) {
glm_ortho_lh_zo(box[0][0], box[1][0],
box[0][1], box[1][1],
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up unit orthographic projection matrix
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* @param[in] aspect aspect ration ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_lh_zo(float aspect, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_lh_zo(-aspect, aspect, -1.0f, 1.0f, -100.0f, 100.0f, dest);
return;
}
aspect = 1.0f / aspect;
glm_ortho_lh_zo(-1.0f, 1.0f, -aspect, aspect, -100.0f, 100.0f, dest);
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_s_lh_zo(float aspect, float size, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_lh_zo(-size * aspect,
size * aspect,
-size,
size,
-size - 100.0f,
size + 100.0f,
dest);
return;
}
glm_ortho_lh_zo(-size,
size,
-size / aspect,
size / aspect,
-size - 100.0f,
size + 100.0f,
dest);
}
#endif /*cglm_ortho_lh_zo_h*/

View File

@ -0,0 +1,183 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_ortho_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_rh_no(vec3 box[2], mat4 dest)
CGLM_INLINE void glm_ortho_aabb_p_rh_no(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_pz_rh_no(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_default_rh_no(float aspect,
mat4 dest)
CGLM_INLINE void glm_ortho_default_s_rh_no(float aspect,
float size,
mat4 dest)
*/
#ifndef cglm_ortho_rh_no_h
#define cglm_ortho_rh_no_h
#include "../common.h"
#include "../plane.h"
#include "../mat4.h"
/*!
* @brief set up orthographic projection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
dest[0][0] = 2.0f * rl;
dest[1][1] = 2.0f * tb;
dest[2][2] = 2.0f * fn;
dest[3][0] =-(right + left) * rl;
dest[3][1] =-(top + bottom) * tb;
dest[3][2] = (farZ + nearZ) * fn;
dest[3][3] = 1.0f;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_rh_no(vec3 box[2], mat4 dest) {
glm_ortho_rh_no(box[0][0], box[1][0],
box[0][1], box[1][1],
-box[1][2], -box[0][2],
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_p_rh_no(vec3 box[2], float padding, mat4 dest) {
glm_ortho_rh_no(box[0][0] - padding, box[1][0] + padding,
box[0][1] - padding, box[1][1] + padding,
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_pz_rh_no(vec3 box[2], float padding, mat4 dest) {
glm_ortho_rh_no(box[0][0], box[1][0],
box[0][1], box[1][1],
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up unit orthographic projection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ration ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_rh_no(float aspect, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_rh_no(-aspect, aspect, -1.0f, 1.0f, -100.0f, 100.0f, dest);
return;
}
aspect = 1.0f / aspect;
glm_ortho_rh_no(-1.0f, 1.0f, -aspect, aspect, -100.0f, 100.0f, dest);
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_s_rh_no(float aspect, float size, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_rh_no(-size * aspect,
size * aspect,
-size,
size,
-size - 100.0f,
size + 100.0f,
dest);
return;
}
glm_ortho_rh_no(-size,
size,
-size / aspect,
size / aspect,
-size - 100.0f,
size + 100.0f,
dest);
}
#endif /*cglm_ortho_rh_no_h*/

View File

@ -0,0 +1,181 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_ortho_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_rh_zo(vec3 box[2], mat4 dest)
CGLM_INLINE void glm_ortho_aabb_p_rh_zo(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_pz_rh_zo(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_default_rh_zo(float aspect,
mat4 dest)
CGLM_INLINE void glm_ortho_default_s_rh_zo(float aspect,
float size,
mat4 dest)
*/
#ifndef cglm_ortho_rh_zo_h
#define cglm_ortho_rh_zo_h
#include "../common.h"
#include "../plane.h"
#include "../mat4.h"
/*!
* @brief set up orthographic projection matrix with a right-hand coordinate
* system and a clip-space of [0, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
dest[0][0] = 2.0f * rl;
dest[1][1] = 2.0f * tb;
dest[2][2] = fn;
dest[3][0] =-(right + left) * rl;
dest[3][1] =-(top + bottom) * tb;
dest[3][2] = nearZ * fn;
dest[3][3] = 1.0f;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a clip-space with depth
* values from zero to one.
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_rh_zo(vec3 box[2], mat4 dest) {
glm_ortho_rh_zo(box[0][0], box[1][0],
box[0][1], box[1][1],
-box[1][2], -box[0][2],
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a clip-space with depth
* values from zero to one.
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_p_rh_zo(vec3 box[2], float padding, mat4 dest) {
glm_ortho_rh_zo(box[0][0] - padding, box[1][0] + padding,
box[0][1] - padding, box[1][1] + padding,
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a clip-space with depth
* values from zero to one.
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_pz_rh_zo(vec3 box[2], float padding, mat4 dest) {
glm_ortho_rh_zo(box[0][0], box[1][0],
box[0][1], box[1][1],
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up unit orthographic projection matrix with a right-hand
* coordinate system and a clip-space of [0, 1].
*
* @param[in] aspect aspect ration ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_rh_zo(float aspect, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_rh_zo(-aspect, aspect, -1.0f, 1.0f, -100.0f, 100.0f, dest);
return;
}
aspect = 1.0f / aspect;
glm_ortho_rh_zo(-1.0f, 1.0f, -aspect, aspect, -100.0f, 100.0f, dest);
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
* with a right-hand coordinate system and a clip-space with depth
* values from zero to one.
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_s_rh_zo(float aspect, float size, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_rh_zo(-size * aspect,
size * aspect,
-size,
size,
-size - 100.0f,
size + 100.0f,
dest);
return;
}
glm_ortho_rh_zo(-size,
size,
-size / aspect,
size / aspect,
-size - 100.0f,
size + 100.0f,
dest);
}
#endif /*cglm_ortho_rh_zo_h*/

View File

@ -0,0 +1,48 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float *farZ)
CGLM_INLINE float glm_persp_fovy(mat4 proj)
CGLM_INLINE float glm_persp_aspect(mat4 proj)
CGLM_INLINE void glm_persp_sizes(mat4 proj, float fovy, vec4 dest)
*/
#ifndef cglm_persp_h
#define cglm_persp_h
#include "../common.h"
#include "../plane.h"
#include "../mat4.h"
/*!
* @brief returns field of view angle along the Y-axis (in radians)
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_fovy(mat4 proj) {
return 2.0f * atanf(1.0f / proj[1][1]);
}
/*!
* @brief returns aspect ratio of perspective projection
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_aspect(mat4 proj) {
return proj[1][1] / proj[0][0];
}
#endif /* cglm_persp_h */

View File

@ -0,0 +1,395 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_frustum_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_lh_no(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_default_lh_no(float aspect, mat4 dest)
CGLM_INLINE void glm_perspective_resize_lh_no(float aspect, mat4 proj)
CGLM_INLINE void glm_persp_move_far_lh_no(mat4 proj,
float deltaFar)
CGLM_INLINE void glm_persp_decomp_lh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decompv_lh_no(mat4 proj,
float dest[6])
CGLM_INLINE void glm_persp_decomp_x_lh_no(mat4 proj,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decomp_y_lh_no(mat4 proj,
float * __restrict top,
float * __restrict bottom)
CGLM_INLINE void glm_persp_decomp_z_lh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_far_lh_no(mat4 proj, float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_near_lh_no(mat4 proj, float * __restrict nearZ)
CGLM_INLINE void glm_persp_sizes_lh_no(mat4 proj, float fovy, vec4 dest)
*/
#ifndef cglm_persp_lh_no_h
#define cglm_persp_lh_no_h
#include "../common.h"
#include "persp.h"
/*!
* @brief set up perspective peprojection matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_frustum_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn, nv;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
nv = 2.0f * nearZ;
dest[0][0] = nv * rl;
dest[1][1] = nv * tb;
dest[2][0] = (right + left) * rl;
dest[2][1] = (top + bottom) * tb;
dest[2][2] =-(farZ + nearZ) * fn;
dest[2][3] = 1.0f;
dest[3][2] = farZ * nv * fn;
}
/*!
* @brief set up perspective projection matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_lh_no(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest) {
float f, fn;
glm_mat4_zero(dest);
f = 1.0f / tanf(fovy * 0.5f);
fn = 1.0f / (nearZ - farZ);
dest[0][0] = f / aspect;
dest[1][1] = f;
dest[2][2] =-(nearZ + farZ) * fn;
dest[2][3] = 1.0f;
dest[3][2] = 2.0f * nearZ * farZ * fn;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_default_lh_no(float aspect, mat4 dest) {
glm_perspective_lh_no(GLM_PI_4f, aspect, 0.01f, 100.0f, dest);
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* resized with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in, out] proj perspective projection matrix
*/
CGLM_INLINE
void
glm_perspective_resize_lh_no(float aspect, mat4 proj) {
if (proj[0][0] == 0.0f)
return;
proj[0][0] = proj[1][1] / aspect;
}
/*!
* @brief extend perspective projection matrix's far distance
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
void
glm_persp_move_far_lh_no(mat4 proj, float deltaFar) {
float fn, farZ, nearZ, p22, p32;
p22 = -proj[2][2];
p32 = proj[3][2];
nearZ = p32 / (p22 - 1.0f);
farZ = p32 / (p22 + 1.0f) + deltaFar;
fn = 1.0f / (nearZ - farZ);
proj[2][2] = -(farZ + nearZ) * fn;
proj[3][2] = 2.0f * nearZ * farZ * fn;
}
/*!
* @brief decomposes frustum values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_lh_no(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
float m00, m11, m20, m21, m22, m32, n, f;
float n_m11, n_m00;
m00 = proj[0][0];
m11 = proj[1][1];
m20 = proj[2][0];
m21 = proj[2][1];
m22 =-proj[2][2];
m32 = proj[3][2];
n = m32 / (m22 - 1.0f);
f = m32 / (m22 + 1.0f);
n_m11 = n / m11;
n_m00 = n / m00;
*nearZ = n;
*farZ = f;
*bottom = n_m11 * (m21 - 1.0f);
*top = n_m11 * (m21 + 1.0f);
*left = n_m00 * (m20 - 1.0f);
*right = n_m00 * (m20 + 1.0f);
}
/*!
* @brief decomposes frustum values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
* this makes easy to get all values at once
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glm_persp_decompv_lh_no(mat4 proj, float dest[6]) {
glm_persp_decomp_lh_no(proj, &dest[0], &dest[1], &dest[2],
&dest[3], &dest[4], &dest[5]);
}
/*!
* @brief decomposes left and right values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_x_lh_no(mat4 proj,
float * __restrict left,
float * __restrict right) {
float nearZ, m20, m00, m22;
m00 = proj[0][0];
m20 = proj[2][0];
m22 =-proj[2][2];
nearZ = proj[3][2] / (m22 - 1.0f);
*left = nearZ * (m20 - 1.0f) / m00;
*right = nearZ * (m20 + 1.0f) / m00;
}
/*!
* @brief decomposes top and bottom values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
* y stands for y axis (top / botom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glm_persp_decomp_y_lh_no(mat4 proj,
float * __restrict top,
float * __restrict bottom) {
float nearZ, m21, m11, m22;
m21 = proj[2][1];
m11 = proj[1][1];
m22 =-proj[2][2];
nearZ = proj[3][2] / (m22 - 1.0f);
*bottom = nearZ * (m21 - 1.0f) / m11;
*top = nearZ * (m21 + 1.0f) / m11;
}
/*!
* @brief decomposes near and far values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_z_lh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ) {
float m32, m22;
m32 = proj[3][2];
m22 =-proj[2][2];
*nearZ = m32 / (m22 - 1.0f);
*farZ = m32 / (m22 + 1.0f);
}
/*!
* @brief decomposes far value of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_far_lh_no(mat4 proj, float * __restrict farZ) {
*farZ = proj[3][2] / (-proj[2][2] + 1.0f);
}
/*!
* @brief decomposes near value of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
CGLM_INLINE
void
glm_persp_decomp_near_lh_no(mat4 proj, float * __restrict nearZ) {
*nearZ = proj[3][2] / (-proj[2][2] - 1.0f);
}
/*!
* @brief returns sizes of near and far planes of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
void
glm_persp_sizes_lh_no(mat4 proj, float fovy, vec4 dest) {
float t, a, nearZ, farZ;
t = 2.0f * tanf(fovy * 0.5f);
a = glm_persp_aspect(proj);
glm_persp_decomp_z_lh_no(proj, &nearZ, &farZ);
dest[1] = t * nearZ;
dest[3] = t * farZ;
dest[0] = a * dest[1];
dest[2] = a * dest[3];
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
* with a left-hand coordinate system and a clip-space of [-1, 1].
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_fovy_lh_no(mat4 proj) {
return glm_persp_fovy(proj);
}
/*!
* @brief returns aspect ratio of perspective projection
* with a left-hand coordinate system and a clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_aspect_lh_no(mat4 proj) {
return glm_persp_aspect(proj);
}
#endif /*cglm_cam_lh_no_h*/

View File

@ -0,0 +1,387 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_frustum_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_lh_zo(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_default_lh_zo(float aspect, mat4 dest)
CGLM_INLINE void glm_perspective_resize_lh_zo(float aspect, mat4 proj)
CGLM_INLINE void glm_persp_move_far_lh_zo(mat4 proj,
float deltaFar)
CGLM_INLINE void glm_persp_decomp_lh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decompv_lh_zo(mat4 proj,
float dest[6])
CGLM_INLINE void glm_persp_decomp_x_lh_zo(mat4 proj,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decomp_y_lh_zo(mat4 proj,
float * __restrict top,
float * __restrict bottom)
CGLM_INLINE void glm_persp_decomp_z_lh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_far_lh_zo(mat4 proj, float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_near_lh_zo(mat4 proj, float * __restrict nearZ)
CGLM_INLINE void glm_persp_sizes_lh_zo(mat4 proj, float fovy, vec4 dest)
*/
#ifndef cglm_persp_lh_zo_h
#define cglm_persp_lh_zo_h
#include "../common.h"
#include "persp.h"
/*!
* @brief set up perspective peprojection matrix with a left-hand coordinate
* system and a clip-space of [0, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_frustum_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn, nv;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
nv = 2.0f * nearZ;
dest[0][0] = nv * rl;
dest[1][1] = nv * tb;
dest[2][0] = (right + left) * rl;
dest[2][1] = (top + bottom) * tb;
dest[2][2] =-farZ * fn;
dest[2][3] = 1.0f;
dest[3][2] = farZ * nearZ * fn;
}
/*!
* @brief set up perspective projection matrix with a left-hand coordinate
* system and a clip-space of [0, 1].
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_lh_zo(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest) {
float f, fn;
glm_mat4_zero(dest);
f = 1.0f / tanf(fovy * 0.5f);
fn = 1.0f / (nearZ - farZ);
dest[0][0] = f / aspect;
dest[1][1] = f;
dest[2][2] =-farZ * fn;
dest[2][3] = 1.0f;
dest[3][2] = nearZ * farZ * fn;
}
/*!
* @brief extend perspective projection matrix's far distance with a
* left-hand coordinate system and a clip-space with depth values
* from zero to one.
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
void
glm_persp_move_far_lh_zo(mat4 proj, float deltaFar) {
float fn, farZ, nearZ, p22, p32;
p22 = -proj[2][2];
p32 = proj[3][2];
nearZ = p32 / p22;
farZ = p32 / (p22 + 1.0f) + deltaFar;
fn = 1.0f / (nearZ - farZ);
proj[2][2] = -farZ * fn;
proj[3][2] = nearZ * farZ * fn;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_default_lh_zo(float aspect, mat4 dest) {
glm_perspective_lh_zo(GLM_PI_4f, aspect, 0.01f, 100.0f, dest);
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* reized
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in, out] proj perspective projection matrix
*/
CGLM_INLINE
void
glm_perspective_resize_lh_zo(float aspect, mat4 proj) {
if (proj[0][0] == 0.0f)
return;
proj[0][0] = proj[1][1] / aspect;
}
/*!
* @brief decomposes frustum values of perspective projection
* with angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_lh_zo(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
float m00, m11, m20, m21, m22, m32, n, f;
float n_m11, n_m00;
m00 = proj[0][0];
m11 = proj[1][1];
m20 = proj[2][0];
m21 = proj[2][1];
m22 =-proj[2][2];
m32 = proj[3][2];
n = m32 / m22;
f = m32 / (m22 + 1.0f);
n_m11 = n / m11;
n_m00 = n / m00;
*nearZ = n;
*farZ = f;
*bottom = n_m11 * (m21 - 1.0f);
*top = n_m11 * (m21 + 1.0f);
*left = n_m00 * (m20 - 1.0f);
*right = n_m00 * (m20 + 1.0f);
}
/*!
* @brief decomposes frustum values of perspective projection
* with angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
* this makes easy to get all values at once
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glm_persp_decompv_lh_zo(mat4 proj, float dest[6]) {
glm_persp_decomp_lh_zo(proj, &dest[0], &dest[1], &dest[2],
&dest[3], &dest[4], &dest[5]);
}
/*!
* @brief decomposes left and right values of perspective projection (ZO).
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_x_lh_zo(mat4 proj,
float * __restrict left,
float * __restrict right) {
float nearZ, m20, m00;
m00 = proj[0][0];
m20 = proj[2][0];
nearZ = proj[3][2] / (proj[3][3]);
*left = nearZ * (m20 - 1.0f) / m00;
*right = nearZ * (m20 + 1.0f) / m00;
}
/*!
* @brief decomposes top and bottom values of perspective projection
* with angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
* y stands for y axis (top / bottom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glm_persp_decomp_y_lh_zo(mat4 proj,
float * __restrict top,
float * __restrict bottom) {
float nearZ, m21, m11;
m21 = proj[2][1];
m11 = proj[1][1];
nearZ = proj[3][2] / (proj[3][3]);
*bottom = nearZ * (m21 - 1) / m11;
*top = nearZ * (m21 + 1) / m11;
}
/*!
* @brief decomposes near and far values of perspective projection
* with angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_z_lh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ) {
float m32, m22;
m32 = proj[3][2];
m22 = -proj[2][2];
*nearZ = m32 / m22;
*farZ = m32 / (m22 + 1.0f);
}
/*!
* @brief decomposes far value of perspective projection
* with angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_far_lh_zo(mat4 proj, float * __restrict farZ) {
*farZ = proj[3][2] / (-proj[2][2] + 1.0f);
}
/*!
* @brief decomposes near value of perspective projection
* with angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
CGLM_INLINE
void
glm_persp_decomp_near_lh_zo(mat4 proj, float * __restrict nearZ) {
*nearZ = proj[3][2] / -proj[2][2];
}
/*!
* @brief returns sizes of near and far planes of perspective projection
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
void
glm_persp_sizes_lh_zo(mat4 proj, float fovy, vec4 dest) {
float t, a, nearZ, farZ;
t = 2.0f * tanf(fovy * 0.5f);
a = glm_persp_aspect(proj);
glm_persp_decomp_z_lh_zo(proj, &nearZ, &farZ);
dest[1] = t * nearZ;
dest[3] = t * farZ;
dest[0] = a * dest[1];
dest[2] = a * dest[3];
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_fovy_lh_zo(mat4 proj) {
return glm_persp_fovy(proj);
}
/*!
* @brief returns aspect ratio of perspective projection
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_aspect_lh_zo(mat4 proj) {
return glm_persp_aspect(proj);
}
#endif /*cglm_persp_lh_zo_h*/

View File

@ -0,0 +1,395 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_frustum_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_rh_no(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_default_rh_no(float aspect, mat4 dest)
CGLM_INLINE void glm_perspective_resize_rh_no(float aspect, mat4 proj)
CGLM_INLINE void glm_persp_move_far_rh_no(mat4 proj,
float deltaFar)
CGLM_INLINE void glm_persp_decomp_rh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decompv_rh_no(mat4 proj,
float dest[6])
CGLM_INLINE void glm_persp_decomp_x_rh_no(mat4 proj,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decomp_y_rh_no(mat4 proj,
float * __restrict top,
float * __restrict bottom)
CGLM_INLINE void glm_persp_decomp_z_rh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_far_rh_no(mat4 proj, float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_near_rh_no(mat4 proj, float * __restrict nearZ)
CGLM_INLINE void glm_persp_sizes_rh_no(mat4 proj, float fovy, vec4 dest)
*/
#ifndef cglm_persp_rh_no_h
#define cglm_persp_rh_no_h
#include "../common.h"
#include "persp.h"
/*!
* @brief set up perspective peprojection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_frustum_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn, nv;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
nv = 2.0f * nearZ;
dest[0][0] = nv * rl;
dest[1][1] = nv * tb;
dest[2][0] = (right + left) * rl;
dest[2][1] = (top + bottom) * tb;
dest[2][2] = (farZ + nearZ) * fn;
dest[2][3] =-1.0f;
dest[3][2] = farZ * nv * fn;
}
/*!
* @brief set up perspective projection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_rh_no(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest) {
float f, fn;
glm_mat4_zero(dest);
f = 1.0f / tanf(fovy * 0.5f);
fn = 1.0f / (nearZ - farZ);
dest[0][0] = f / aspect;
dest[1][1] = f;
dest[2][2] = (nearZ + farZ) * fn;
dest[2][3] =-1.0f;
dest[3][2] = 2.0f * nearZ * farZ * fn;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_default_rh_no(float aspect, mat4 dest) {
glm_perspective_rh_no(GLM_PI_4f, aspect, 0.01f, 100.0f, dest);
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* resized with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in, out] proj perspective projection matrix
*/
CGLM_INLINE
void
glm_perspective_resize_rh_no(float aspect, mat4 proj) {
if (proj[0][0] == 0.0f)
return;
proj[0][0] = proj[1][1] / aspect;
}
/*!
* @brief extend perspective projection matrix's far distance
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
void
glm_persp_move_far_rh_no(mat4 proj, float deltaFar) {
float fn, farZ, nearZ, p22, p32;
p22 = proj[2][2];
p32 = proj[3][2];
nearZ = p32 / (p22 - 1.0f);
farZ = p32 / (p22 + 1.0f) + deltaFar;
fn = 1.0f / (nearZ - farZ);
proj[2][2] = (farZ + nearZ) * fn;
proj[3][2] = 2.0f * nearZ * farZ * fn;
}
/*!
* @brief decomposes frustum values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_rh_no(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
float m00, m11, m20, m21, m22, m32, n, f;
float n_m11, n_m00;
m00 = proj[0][0];
m11 = proj[1][1];
m20 = proj[2][0];
m21 = proj[2][1];
m22 = proj[2][2];
m32 = proj[3][2];
n = m32 / (m22 - 1.0f);
f = m32 / (m22 + 1.0f);
n_m11 = n / m11;
n_m00 = n / m00;
*nearZ = n;
*farZ = f;
*bottom = n_m11 * (m21 - 1.0f);
*top = n_m11 * (m21 + 1.0f);
*left = n_m00 * (m20 - 1.0f);
*right = n_m00 * (m20 + 1.0f);
}
/*!
* @brief decomposes frustum values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* this makes easy to get all values at once
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glm_persp_decompv_rh_no(mat4 proj, float dest[6]) {
glm_persp_decomp_rh_no(proj, &dest[0], &dest[1], &dest[2],
&dest[3], &dest[4], &dest[5]);
}
/*!
* @brief decomposes left and right values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_x_rh_no(mat4 proj,
float * __restrict left,
float * __restrict right) {
float nearZ, m20, m00, m22;
m00 = proj[0][0];
m20 = proj[2][0];
m22 = proj[2][2];
nearZ = proj[3][2] / (m22 - 1.0f);
*left = nearZ * (m20 - 1.0f) / m00;
*right = nearZ * (m20 + 1.0f) / m00;
}
/*!
* @brief decomposes top and bottom values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* y stands for y axis (top / botom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glm_persp_decomp_y_rh_no(mat4 proj,
float * __restrict top,
float * __restrict bottom) {
float nearZ, m21, m11, m22;
m21 = proj[2][1];
m11 = proj[1][1];
m22 = proj[2][2];
nearZ = proj[3][2] / (m22 - 1.0f);
*bottom = nearZ * (m21 - 1.0f) / m11;
*top = nearZ * (m21 + 1.0f) / m11;
}
/*!
* @brief decomposes near and far values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_z_rh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ) {
float m32, m22;
m32 = proj[3][2];
m22 = proj[2][2];
*nearZ = m32 / (m22 - 1.0f);
*farZ = m32 / (m22 + 1.0f);
}
/*!
* @brief decomposes far value of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_far_rh_no(mat4 proj, float * __restrict farZ) {
*farZ = proj[3][2] / (proj[2][2] + 1.0f);
}
/*!
* @brief decomposes near value of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
CGLM_INLINE
void
glm_persp_decomp_near_rh_no(mat4 proj, float * __restrict nearZ) {
*nearZ = proj[3][2] / (proj[2][2] - 1.0f);
}
/*!
* @brief returns sizes of near and far planes of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
void
glm_persp_sizes_rh_no(mat4 proj, float fovy, vec4 dest) {
float t, a, nearZ, farZ;
t = 2.0f * tanf(fovy * 0.5f);
a = glm_persp_aspect(proj);
glm_persp_decomp_z_rh_no(proj, &nearZ, &farZ);
dest[1] = t * nearZ;
dest[3] = t * farZ;
dest[0] = a * dest[1];
dest[2] = a * dest[3];
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
* with a right-hand coordinate system and a clip-space of [-1, 1].
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_fovy_rh_no(mat4 proj) {
return glm_persp_fovy(proj);
}
/*!
* @brief returns aspect ratio of perspective projection
* with a right-hand coordinate system and a clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_aspect_rh_no(mat4 proj) {
return glm_persp_aspect(proj);
}
#endif /*cglm_cam_rh_no_h*/

View File

@ -0,0 +1,389 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_frustum_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_rh_zo(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_default_rh_zo(float aspect, mat4 dest)
CGLM_INLINE void glm_perspective_resize_rh_zo(float aspect, mat4 proj)
CGLM_INLINE void glm_persp_move_far_rh_zo(mat4 proj,
float deltaFar)
CGLM_INLINE void glm_persp_decomp_rh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decompv_rh_zo(mat4 proj,
float dest[6])
CGLM_INLINE void glm_persp_decomp_x_rh_zo(mat4 proj,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decomp_y_rh_zo(mat4 proj,
float * __restrict top,
float * __restrict bottom)
CGLM_INLINE void glm_persp_decomp_z_rh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_far_rh_zo(mat4 proj, float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_near_rh_zo(mat4 proj, float * __restrict nearZ)
CGLM_INLINE void glm_persp_sizes_rh_zo(mat4 proj, float fovy, vec4 dest)
*/
#ifndef cglm_persp_rh_zo_h
#define cglm_persp_rh_zo_h
#include "../common.h"
#include "persp.h"
/*!
* @brief set up perspective peprojection matrix with a right-hand coordinate
* system and a clip-space of [0, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_frustum_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn, nv;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
nv = 2.0f * nearZ;
dest[0][0] = nv * rl;
dest[1][1] = nv * tb;
dest[2][0] = (right + left) * rl;
dest[2][1] = (top + bottom) * tb;
dest[2][2] = farZ * fn;
dest[2][3] =-1.0f;
dest[3][2] = farZ * nearZ * fn;
}
/*!
* @brief set up perspective projection matrix with a right-hand coordinate
* system and a clip-space of [0, 1].
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_rh_zo(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest) {
float f, fn;
glm_mat4_zero(dest);
f = 1.0f / tanf(fovy * 0.5f);
fn = 1.0f / (nearZ - farZ);
dest[0][0] = f / aspect;
dest[1][1] = f;
dest[2][2] = farZ * fn;
dest[2][3] =-1.0f;
dest[3][2] = nearZ * farZ * fn;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_default_rh_zo(float aspect, mat4 dest) {
glm_perspective_rh_zo(GLM_PI_4f, aspect, 0.01f, 100.0f, dest);
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* resized with a right-hand coordinate system and a clip-space of
* [0, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in, out] proj perspective projection matrix
*/
CGLM_INLINE
void
glm_perspective_resize_rh_zo(float aspect, mat4 proj) {
if (proj[0][0] == 0.0f)
return;
proj[0][0] = proj[1][1] / aspect;
}
/*!
* @brief extend perspective projection matrix's far distance with a
* right-hand coordinate system and a clip-space of [0, 1].
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
void
glm_persp_move_far_rh_zo(mat4 proj, float deltaFar) {
float fn, farZ, nearZ, p22, p32;
p22 = proj[2][2];
p32 = proj[3][2];
nearZ = p32 / p22;
farZ = p32 / (p22 + 1.0f) + deltaFar;
fn = 1.0f / (nearZ - farZ);
proj[2][2] = farZ * fn;
proj[3][2] = nearZ * farZ * fn;
}
/*!
* @brief decomposes frustum values of perspective projection
* with angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_rh_zo(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
float m00, m11, m20, m21, m22, m32, n, f;
float n_m11, n_m00;
m00 = proj[0][0];
m11 = proj[1][1];
m20 = proj[2][0];
m21 = proj[2][1];
m22 = proj[2][2];
m32 = proj[3][2];
n = m32 / m22;
f = m32 / (m22 + 1.0f);
n_m11 = n / m11;
n_m00 = n / m00;
*nearZ = n;
*farZ = f;
*bottom = n_m11 * (m21 - 1.0f);
*top = n_m11 * (m21 + 1.0f);
*left = n_m00 * (m20 - 1.0f);
*right = n_m00 * (m20 + 1.0f);
}
/*!
* @brief decomposes frustum values of perspective projection
* with angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
* this makes easy to get all values at once
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glm_persp_decompv_rh_zo(mat4 proj, float dest[6]) {
glm_persp_decomp_rh_zo(proj, &dest[0], &dest[1], &dest[2],
&dest[3], &dest[4], &dest[5]);
}
/*!
* @brief decomposes left and right values of perspective projection (ZO).
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_x_rh_zo(mat4 proj,
float * __restrict left,
float * __restrict right) {
float nearZ, m20, m00, m22;
m00 = proj[0][0];
m20 = proj[2][0];
m22 = proj[2][2];
nearZ = proj[3][2] / m22;
*left = nearZ * (m20 - 1.0f) / m00;
*right = nearZ * (m20 + 1.0f) / m00;
}
/*!
* @brief decomposes top and bottom values of perspective projection
* with angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
* y stands for y axis (top / bottom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glm_persp_decomp_y_rh_zo(mat4 proj,
float * __restrict top,
float * __restrict bottom) {
float nearZ, m21, m11, m22;
m21 = proj[2][1];
m11 = proj[1][1];
m22 = proj[2][2];
nearZ = proj[3][2] / m22;
*bottom = nearZ * (m21 - 1) / m11;
*top = nearZ * (m21 + 1) / m11;
}
/*!
* @brief decomposes near and far values of perspective projection
* with angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_z_rh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ) {
float m32, m22;
m32 = proj[3][2];
m22 = proj[2][2];
*nearZ = m32 / m22;
*farZ = m32 / (m22 + 1.0f);
}
/*!
* @brief decomposes far value of perspective projection
* with angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_far_rh_zo(mat4 proj, float * __restrict farZ) {
*farZ = proj[3][2] / (proj[2][2] + 1.0f);
}
/*!
* @brief decomposes near value of perspective projection
* with angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
CGLM_INLINE
void
glm_persp_decomp_near_rh_zo(mat4 proj, float * __restrict nearZ) {
*nearZ = proj[3][2] / proj[2][2];
}
/*!
* @brief returns sizes of near and far planes of perspective projection
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
void
glm_persp_sizes_rh_zo(mat4 proj, float fovy, vec4 dest) {
float t, a, nearZ, farZ;
t = 2.0f * tanf(fovy * 0.5f);
a = glm_persp_aspect(proj);
glm_persp_decomp_z_rh_zo(proj, &nearZ, &farZ);
dest[1] = t * nearZ;
dest[3] = t * farZ;
dest[0] = a * dest[1];
dest[2] = a * dest[3];
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
* with a right-hand coordinate system and a clip-space of [0, 1].
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_fovy_rh_zo(mat4 proj) {
return glm_persp_fovy(proj);
}
/*!
* @brief returns aspect ratio of perspective projection
* with a right-hand coordinate system and a clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_aspect_rh_zo(mat4 proj) {
return glm_persp_aspect(proj);
}
#endif /*cglm_persp_rh_zo_h*/

View File

@ -0,0 +1,109 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_project_no_h
#define cglm_project_no_h
#include "../common.h"
#include "../vec3.h"
#include "../vec4.h"
#include "../mat4.h"
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* if you don't have ( and don't want to have ) an inverse matrix then use
* glm_unproject version. You may use existing inverse of matrix in somewhere
* else, this is why glm_unprojecti exists to save save inversion cost
*
* [1] space:
* 1- if m = invProj: View Space
* 2- if m = invViewProj: World Space
* 3- if m = invMVP: Object Space
*
* You probably want to map the coordinates into object space
* so use invMVP as m
*
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
* glm_mat4_inv(viewProj, invMVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] invMat matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest unprojected coordinates
*/
CGLM_INLINE
void
glm_unprojecti_no(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
vec4 v;
v[0] = 2.0f * (pos[0] - vp[0]) / vp[2] - 1.0f;
v[1] = 2.0f * (pos[1] - vp[1]) / vp[3] - 1.0f;
v[2] = 2.0f * pos[2] - 1.0f;
v[3] = 1.0f;
glm_mat4_mulv(invMat, v, v);
glm_vec4_scale(v, 1.0f / v[3], v);
glm_vec3(v, dest);
}
/*!
* @brief map object coordinates to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos object coordinates
* @param[in] m MVP matrix
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest projected coordinates
*/
CGLM_INLINE
void
glm_project_no(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
CGLM_ALIGN(16) vec4 pos4;
glm_vec4(pos, 1.0f, pos4);
glm_mat4_mulv(m, pos4, pos4);
glm_vec4_scale(pos4, 1.0f / pos4[3], pos4); /* pos = pos / pos.w */
glm_vec4_scale(pos4, 0.5f, pos4);
glm_vec4_adds(pos4, 0.5f, pos4);
dest[0] = pos4[0] * vp[2] + vp[0];
dest[1] = pos4[1] * vp[3] + vp[1];
dest[2] = pos4[2];
}
/*!
* @brief map object's z coordinate to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] v object coordinates
* @param[in] m MVP matrix
*
* @returns projected z coordinate
*/
CGLM_INLINE
float
glm_project_z_no(vec3 v, mat4 m) {
float z, w;
z = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2] + m[3][2];
w = m[0][3] * v[0] + m[1][3] * v[1] + m[2][3] * v[2] + m[3][3];
return 0.5f * (z / w) + 0.5f;
}
#endif /* cglm_project_no_h */

View File

@ -0,0 +1,111 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_project_zo_h
#define cglm_project_zo_h
#include "../common.h"
#include "../vec3.h"
#include "../vec4.h"
#include "../mat4.h"
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* if you don't have ( and don't want to have ) an inverse matrix then use
* glm_unproject version. You may use existing inverse of matrix in somewhere
* else, this is why glm_unprojecti exists to save save inversion cost
*
* [1] space:
* 1- if m = invProj: View Space
* 2- if m = invViewProj: World Space
* 3- if m = invMVP: Object Space
*
* You probably want to map the coordinates into object space
* so use invMVP as m
*
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
* glm_mat4_inv(viewProj, invMVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] invMat matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest unprojected coordinates
*/
CGLM_INLINE
void
glm_unprojecti_zo(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
vec4 v;
v[0] = 2.0f * (pos[0] - vp[0]) / vp[2] - 1.0f;
v[1] = 2.0f * (pos[1] - vp[1]) / vp[3] - 1.0f;
v[2] = pos[2];
v[3] = 1.0f;
glm_mat4_mulv(invMat, v, v);
glm_vec4_scale(v, 1.0f / v[3], v);
glm_vec3(v, dest);
}
/*!
* @brief map object coordinates to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos object coordinates
* @param[in] m MVP matrix
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest projected coordinates
*/
CGLM_INLINE
void
glm_project_zo(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
CGLM_ALIGN(16) vec4 pos4;
glm_vec4(pos, 1.0f, pos4);
glm_mat4_mulv(m, pos4, pos4);
glm_vec4_scale(pos4, 1.0f / pos4[3], pos4); /* pos = pos / pos.w */
dest[2] = pos4[2];
glm_vec4_scale(pos4, 0.5f, pos4);
glm_vec4_adds(pos4, 0.5f, pos4);
dest[0] = pos4[0] * vp[2] + vp[0];
dest[1] = pos4[1] * vp[3] + vp[1];
}
/*!
* @brief map object's z coordinate to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] v object coordinates
* @param[in] m MVP matrix
*
* @returns projected z coordinate
*/
CGLM_INLINE
float
glm_project_z_zo(vec3 v, mat4 m) {
float z, w;
z = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2] + m[3][2];
w = m[0][3] * v[0] + m[1][3] * v[1] + m[2][3] * v[2] + m[3][3];
return z / w;
}
#endif /* cglm_project_zo_h */

View File

@ -0,0 +1,99 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_lookat_lh(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_lh(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup_lh(vec3 eye, vec3 dir, mat4 dest)
*/
#ifndef cglm_view_lh_h
#define cglm_view_lh_h
#include "../common.h"
#include "../plane.h"
/*!
* @brief set up view matrix (LH)
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_lookat_lh(vec3 eye, vec3 center, vec3 up, mat4 dest) {
CGLM_ALIGN(8) vec3 f, u, s;
glm_vec3_sub(center, eye, f);
glm_vec3_normalize(f);
glm_vec3_crossn(up, f, s);
glm_vec3_cross(f, s, u);
dest[0][0] = s[0];
dest[0][1] = u[0];
dest[0][2] = f[0];
dest[1][0] = s[1];
dest[1][1] = u[1];
dest[1][2] = f[1];
dest[2][0] = s[2];
dest[2][1] = u[2];
dest[2][2] = f[2];
dest[3][0] =-glm_vec3_dot(s, eye);
dest[3][1] =-glm_vec3_dot(u, eye);
dest[3][2] =-glm_vec3_dot(f, eye);
dest[0][3] = dest[1][3] = dest[2][3] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief set up view matrix with left handed coordinate system
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_lh(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
CGLM_ALIGN(8) vec3 target;
glm_vec3_add(eye, dir, target);
glm_lookat_lh(eye, target, up, dest);
}
/*!
* @brief set up view matrix with left handed coordinate system
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup_lh(vec3 eye, vec3 dir, mat4 dest) {
CGLM_ALIGN(8) vec3 up;
glm_vec3_ortho(dir, up);
glm_look_lh(eye, dir, up, dest);
}
#endif /*cglm_view_lh_h*/

View File

@ -0,0 +1,74 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_lookat_lh_no(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_lh_no(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup_lh_no(vec3 eye, vec3 dir, mat4 dest)
*/
#ifndef cglm_view_lh_no_h
#define cglm_view_lh_no_h
#include "../common.h"
#include "view_lh.h"
/*!
* @brief set up view matrix with left handed coordinate system.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_lookat_lh_no(vec3 eye, vec3 center, vec3 up, mat4 dest) {
glm_lookat_lh(eye, center, up, dest);
}
/*!
* @brief set up view matrix with left handed coordinate system.
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_lh_no(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
glm_look_lh(eye, dir, up, dest);
}
/*!
* @brief set up view matrix with left handed coordinate system.
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup_lh_no(vec3 eye, vec3 dir, mat4 dest) {
glm_look_anyup_lh(eye, dir, dest);
}
#endif /*cglm_view_lh_no_h*/

View File

@ -0,0 +1,74 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_lookat_lh_zo(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_lh_zo(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup_lh_zo(vec3 eye, vec3 dir, mat4 dest)
*/
#ifndef cglm_view_lh_zo_h
#define cglm_view_lh_zo_h
#include "../common.h"
#include "view_lh.h"
/*!
* @brief set up view matrix with left handed coordinate system.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_lookat_lh_zo(vec3 eye, vec3 center, vec3 up, mat4 dest) {
glm_lookat_lh(eye, center, up, dest);
}
/*!
* @brief set up view matrix with left handed coordinate system.
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_lh_zo(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
glm_look_lh(eye, dir, up, dest);
}
/*!
* @brief set up view matrix with left handed coordinate system.
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup_lh_zo(vec3 eye, vec3 dir, mat4 dest) {
glm_look_anyup_lh(eye, dir, dest);
}
#endif /*cglm_view_lh_zo_h*/

View File

@ -0,0 +1,99 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_lookat_rh(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_rh(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup_rh(vec3 eye, vec3 dir, mat4 dest)
*/
#ifndef cglm_view_rh_h
#define cglm_view_rh_h
#include "../common.h"
#include "../plane.h"
/*!
* @brief set up view matrix with right handed coordinate system.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_lookat_rh(vec3 eye, vec3 center, vec3 up, mat4 dest) {
CGLM_ALIGN(8) vec3 f, u, s;
glm_vec3_sub(center, eye, f);
glm_vec3_normalize(f);
glm_vec3_crossn(f, up, s);
glm_vec3_cross(s, f, u);
dest[0][0] = s[0];
dest[0][1] = u[0];
dest[0][2] =-f[0];
dest[1][0] = s[1];
dest[1][1] = u[1];
dest[1][2] =-f[1];
dest[2][0] = s[2];
dest[2][1] = u[2];
dest[2][2] =-f[2];
dest[3][0] =-glm_vec3_dot(s, eye);
dest[3][1] =-glm_vec3_dot(u, eye);
dest[3][2] = glm_vec3_dot(f, eye);
dest[0][3] = dest[1][3] = dest[2][3] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_rh(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
CGLM_ALIGN(8) vec3 target;
glm_vec3_add(eye, dir, target);
glm_lookat_rh(eye, target, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup_rh(vec3 eye, vec3 dir, mat4 dest) {
CGLM_ALIGN(8) vec3 up;
glm_vec3_ortho(dir, up);
glm_look_rh(eye, dir, up, dest);
}
#endif /*cglm_view_rh_h*/

View File

@ -0,0 +1,74 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_lookat_rh_no(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_rh_no(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup_rh_no(vec3 eye, vec3 dir, mat4 dest)
*/
#ifndef cglm_view_rh_no_h
#define cglm_view_rh_no_h
#include "../common.h"
#include "view_rh.h"
/*!
* @brief set up view matrix with right handed coordinate system.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_lookat_rh_no(vec3 eye, vec3 center, vec3 up, mat4 dest) {
glm_lookat_rh(eye, center, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_rh_no(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
glm_look_rh(eye, dir, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup_rh_no(vec3 eye, vec3 dir, mat4 dest) {
glm_look_anyup_rh(eye, dir, dest);
}
#endif /*cglm_view_rh_no_h*/

View File

@ -0,0 +1,74 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_lookat_rh_zo(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_rh_zo(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup_rh_zo(vec3 eye, vec3 dir, mat4 dest)
*/
#ifndef cglm_view_rh_zo_h
#define cglm_view_rh_zo_h
#include "../common.h"
#include "view_rh.h"
/*!
* @brief set up view matrix with right handed coordinate system.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_lookat_rh_zo(vec3 eye, vec3 center, vec3 up, mat4 dest) {
glm_lookat_rh(eye, center, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_rh_zo(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
glm_look_rh(eye, dir, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup_rh_zo(vec3 eye, vec3 dir, mat4 dest) {
glm_look_anyup_rh(eye, dir, dest);
}
#endif /*cglm_view_rh_zo_h*/

26
include/cglm/color.h Normal file
View File

@ -0,0 +1,26 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_color_h
#define cglm_color_h
#include "common.h"
#include "vec3.h"
/*!
* @brief averages the color channels into one value
*
* @param[in] rgb RGB color
*/
CGLM_INLINE
float
glm_luminance(vec3 rgb) {
vec3 l = {0.212671f, 0.715160f, 0.072169f};
return glm_dot(rgb, l);
}
#endif /* cglm_color_h */

85
include/cglm/common.h Normal file
View File

@ -0,0 +1,85 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_common_h
#define cglm_common_h
#ifndef _USE_MATH_DEFINES
# define _USE_MATH_DEFINES /* for windows */
#endif
#ifndef _CRT_SECURE_NO_WARNINGS
# define _CRT_SECURE_NO_WARNINGS /* for windows */
#endif
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>
#include <stdbool.h>
#if defined(_MSC_VER)
# ifdef CGLM_STATIC
# define CGLM_EXPORT
# elif defined(CGLM_EXPORTS)
# define CGLM_EXPORT __declspec(dllexport)
# else
# define CGLM_EXPORT __declspec(dllimport)
# endif
# define CGLM_INLINE __forceinline
#else
# define CGLM_EXPORT __attribute__((visibility("default")))
# define CGLM_INLINE static inline __attribute((always_inline))
#endif
#define GLM_SHUFFLE4(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
#define GLM_SHUFFLE3(z, y, x) (((z) << 4) | ((y) << 2) | (x))
#include "types.h"
#include "simd/intrin.h"
#ifndef CGLM_USE_DEFAULT_EPSILON
# ifndef GLM_FLT_EPSILON
# define GLM_FLT_EPSILON 1e-5f
# endif
#else
# define GLM_FLT_EPSILON FLT_EPSILON
#endif
/*
* Clip control: define CGLM_FORCE_DEPTH_ZERO_TO_ONE before including
* CGLM to use a clip space between 0 to 1.
* Coordinate system: define CGLM_FORCE_LEFT_HANDED before including
* CGLM to use the left handed coordinate system by default.
*/
#define CGLM_CLIP_CONTROL_ZO_BIT (1 << 0) /* ZERO_TO_ONE */
#define CGLM_CLIP_CONTROL_NO_BIT (1 << 1) /* NEGATIVE_ONE_TO_ONE */
#define CGLM_CLIP_CONTROL_LH_BIT (1 << 2) /* LEFT_HANDED, For DirectX, Metal, Vulkan */
#define CGLM_CLIP_CONTROL_RH_BIT (1 << 3) /* RIGHT_HANDED, For OpenGL, default in GLM */
#define CGLM_CLIP_CONTROL_LH_ZO (CGLM_CLIP_CONTROL_LH_BIT | CGLM_CLIP_CONTROL_ZO_BIT)
#define CGLM_CLIP_CONTROL_LH_NO (CGLM_CLIP_CONTROL_LH_BIT | CGLM_CLIP_CONTROL_NO_BIT)
#define CGLM_CLIP_CONTROL_RH_ZO (CGLM_CLIP_CONTROL_RH_BIT | CGLM_CLIP_CONTROL_ZO_BIT)
#define CGLM_CLIP_CONTROL_RH_NO (CGLM_CLIP_CONTROL_RH_BIT | CGLM_CLIP_CONTROL_NO_BIT)
#ifdef CGLM_FORCE_DEPTH_ZERO_TO_ONE
# ifdef CGLM_FORCE_LEFT_HANDED
# define CGLM_CONFIG_CLIP_CONTROL CGLM_CLIP_CONTROL_LH_ZO
# else
# define CGLM_CONFIG_CLIP_CONTROL CGLM_CLIP_CONTROL_RH_ZO
# endif
#else
# ifdef CGLM_FORCE_LEFT_HANDED
# define CGLM_CONFIG_CLIP_CONTROL CGLM_CLIP_CONTROL_LH_NO
# else
# define CGLM_CONFIG_CLIP_CONTROL CGLM_CLIP_CONTROL_RH_NO
# endif
#endif
#endif /* cglm_common_h */

40
include/cglm/curve.h Normal file
View File

@ -0,0 +1,40 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_curve_h
#define cglm_curve_h
#include "common.h"
#include "vec4.h"
#include "mat4.h"
/*!
* @brief helper function to calculate S*M*C multiplication for curves
*
* This function does not encourage you to use SMC,
* instead it is a helper if you use SMC.
*
* if you want to specify S as vector then use more generic glm_mat4_rmc() func.
*
* Example usage:
* B(s) = glm_smc(s, GLM_BEZIER_MAT, (vec4){p0, c0, c1, p1})
*
* @param[in] s parameter between 0 and 1 (this will be [s3, s2, s, 1])
* @param[in] m basis matrix
* @param[in] c position/control vector
*
* @return B(s)
*/
CGLM_INLINE
float
glm_smc(float s, mat4 m, vec4 c) {
vec4 vs;
glm_vec4_cubic(s, vs);
return glm_mat4_rmc(vs, m, c);
}
#endif /* cglm_curve_h */

317
include/cglm/ease.h Normal file
View File

@ -0,0 +1,317 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_ease_h
#define cglm_ease_h
#include "common.h"
CGLM_INLINE
float
glm_ease_linear(float t) {
return t;
}
CGLM_INLINE
float
glm_ease_sine_in(float t) {
return sinf((t - 1.0f) * GLM_PI_2f) + 1.0f;
}
CGLM_INLINE
float
glm_ease_sine_out(float t) {
return sinf(t * GLM_PI_2f);
}
CGLM_INLINE
float
glm_ease_sine_inout(float t) {
return 0.5f * (1.0f - cosf(t * GLM_PIf));
}
CGLM_INLINE
float
glm_ease_quad_in(float t) {
return t * t;
}
CGLM_INLINE
float
glm_ease_quad_out(float t) {
return -(t * (t - 2.0f));
}
CGLM_INLINE
float
glm_ease_quad_inout(float t) {
float tt;
tt = t * t;
if (t < 0.5f)
return 2.0f * tt;
return (-2.0f * tt) + (4.0f * t) - 1.0f;
}
CGLM_INLINE
float
glm_ease_cubic_in(float t) {
return t * t * t;
}
CGLM_INLINE
float
glm_ease_cubic_out(float t) {
float f;
f = t - 1.0f;
return f * f * f + 1.0f;
}
CGLM_INLINE
float
glm_ease_cubic_inout(float t) {
float f;
if (t < 0.5f)
return 4.0f * t * t * t;
f = 2.0f * t - 2.0f;
return 0.5f * f * f * f + 1.0f;
}
CGLM_INLINE
float
glm_ease_quart_in(float t) {
float f;
f = t * t;
return f * f;
}
CGLM_INLINE
float
glm_ease_quart_out(float t) {
float f;
f = t - 1.0f;
return f * f * f * (1.0f - t) + 1.0f;
}
CGLM_INLINE
float
glm_ease_quart_inout(float t) {
float f, g;
if (t < 0.5f) {
f = t * t;
return 8.0f * f * f;
}
f = t - 1.0f;
g = f * f;
return -8.0f * g * g + 1.0f;
}
CGLM_INLINE
float
glm_ease_quint_in(float t) {
float f;
f = t * t;
return f * f * t;
}
CGLM_INLINE
float
glm_ease_quint_out(float t) {
float f, g;
f = t - 1.0f;
g = f * f;
return g * g * f + 1.0f;
}
CGLM_INLINE
float
glm_ease_quint_inout(float t) {
float f, g;
if (t < 0.5f) {
f = t * t;
return 16.0f * f * f * t;
}
f = 2.0f * t - 2.0f;
g = f * f;
return 0.5f * g * g * f + 1.0f;
}
CGLM_INLINE
float
glm_ease_exp_in(float t) {
if (t == 0.0f)
return t;
return powf(2.0f, 10.0f * (t - 1.0f));
}
CGLM_INLINE
float
glm_ease_exp_out(float t) {
if (t == 1.0f)
return t;
return 1.0f - powf(2.0f, -10.0f * t);
}
CGLM_INLINE
float
glm_ease_exp_inout(float t) {
if (t == 0.0f || t == 1.0f)
return t;
if (t < 0.5f)
return 0.5f * powf(2.0f, (20.0f * t) - 10.0f);
return -0.5f * powf(2.0f, (-20.0f * t) + 10.0f) + 1.0f;
}
CGLM_INLINE
float
glm_ease_circ_in(float t) {
return 1.0f - sqrtf(1.0f - (t * t));
}
CGLM_INLINE
float
glm_ease_circ_out(float t) {
return sqrtf((2.0f - t) * t);
}
CGLM_INLINE
float
glm_ease_circ_inout(float t) {
if (t < 0.5f)
return 0.5f * (1.0f - sqrtf(1.0f - 4.0f * (t * t)));
return 0.5f * (sqrtf(-((2.0f * t) - 3.0f) * ((2.0f * t) - 1.0f)) + 1.0f);
}
CGLM_INLINE
float
glm_ease_back_in(float t) {
float o, z;
o = 1.70158f;
z = ((o + 1.0f) * t) - o;
return t * t * z;
}
CGLM_INLINE
float
glm_ease_back_out(float t) {
float o, z, n;
o = 1.70158f;
n = t - 1.0f;
z = (o + 1.0f) * n + o;
return n * n * z + 1.0f;
}
CGLM_INLINE
float
glm_ease_back_inout(float t) {
float o, z, n, m, s, x;
o = 1.70158f;
s = o * 1.525f;
x = 0.5;
n = t / 0.5f;
if (n < 1.0f) {
z = (s + 1) * n - s;
m = n * n * z;
return x * m;
}
n -= 2.0f;
z = (s + 1.0f) * n + s;
m = (n * n * z) + 2;
return x * m;
}
CGLM_INLINE
float
glm_ease_elast_in(float t) {
return sinf(13.0f * GLM_PI_2f * t) * powf(2.0f, 10.0f * (t - 1.0f));
}
CGLM_INLINE
float
glm_ease_elast_out(float t) {
return sinf(-13.0f * GLM_PI_2f * (t + 1.0f)) * powf(2.0f, -10.0f * t) + 1.0f;
}
CGLM_INLINE
float
glm_ease_elast_inout(float t) {
float a;
a = 2.0f * t;
if (t < 0.5f)
return 0.5f * sinf(13.0f * GLM_PI_2f * a)
* powf(2.0f, 10.0f * (a - 1.0f));
return 0.5f * (sinf(-13.0f * GLM_PI_2f * a)
* powf(2.0f, -10.0f * (a - 1.0f)) + 2.0f);
}
CGLM_INLINE
float
glm_ease_bounce_out(float t) {
float tt;
tt = t * t;
if (t < (4.0f / 11.0f))
return (121.0f * tt) / 16.0f;
if (t < 8.0f / 11.0f)
return ((363.0f / 40.0f) * tt) - ((99.0f / 10.0f) * t) + (17.0f / 5.0f);
if (t < (9.0f / 10.0f))
return (4356.0f / 361.0f) * tt
- (35442.0f / 1805.0f) * t
+ (16061.0f / 1805.0f);
return ((54.0f / 5.0f) * tt) - ((513.0f / 25.0f) * t) + (268.0f / 25.0f);
}
CGLM_INLINE
float
glm_ease_bounce_in(float t) {
return 1.0f - glm_ease_bounce_out(1.0f - t);
}
CGLM_INLINE
float
glm_ease_bounce_inout(float t) {
if (t < 0.5f)
return 0.5f * (1.0f - glm_ease_bounce_out(t * 2.0f));
return 0.5f * glm_ease_bounce_out(t * 2.0f - 1.0f) + 0.5f;
}
#endif /* cglm_ease_h */

451
include/cglm/euler.h Normal file
View File

@ -0,0 +1,451 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
NOTE:
angles must be passed as [X-Angle, Y-Angle, Z-angle] order
For instance you don't pass angles as [Z-Angle, X-Angle, Y-angle] to
glm_euler_zxy funciton, All RELATED functions accept angles same order
which is [X, Y, Z].
*/
/*
Types:
enum glm_euler_seq
Functions:
CGLM_INLINE glm_euler_seq glm_euler_order(int newOrder[3]);
CGLM_INLINE void glm_euler_angles(mat4 m, vec3 dest);
CGLM_INLINE void glm_euler(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_xyz(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_zyx(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_zxy(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_xzy(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_yzx(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_yxz(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_by_order(vec3 angles,
glm_euler_seq ord,
mat4 dest);
*/
#ifndef cglm_euler_h
#define cglm_euler_h
#include "common.h"
/*!
* if you have axis order like vec3 orderVec = [0, 1, 2] or [0, 2, 1]...
* vector then you can convert it to this enum by doing this:
* @code
* glm_euler_seq order;
* order = orderVec[0] | orderVec[1] << 2 | orderVec[2] << 4;
* @endcode
* you may need to explicit cast if required
*/
typedef enum glm_euler_seq {
GLM_EULER_XYZ = 0 << 0 | 1 << 2 | 2 << 4,
GLM_EULER_XZY = 0 << 0 | 2 << 2 | 1 << 4,
GLM_EULER_YZX = 1 << 0 | 2 << 2 | 0 << 4,
GLM_EULER_YXZ = 1 << 0 | 0 << 2 | 2 << 4,
GLM_EULER_ZXY = 2 << 0 | 0 << 2 | 1 << 4,
GLM_EULER_ZYX = 2 << 0 | 1 << 2 | 0 << 4
} glm_euler_seq;
CGLM_INLINE
glm_euler_seq
glm_euler_order(int ord[3]) {
return (glm_euler_seq)(ord[0] << 0 | ord[1] << 2 | ord[2] << 4);
}
/*!
* @brief extract euler angles (in radians) using xyz order
*
* @param[in] m affine transform
* @param[out] dest angles vector [x, y, z]
*/
CGLM_INLINE
void
glm_euler_angles(mat4 m, vec3 dest) {
float m00, m01, m10, m11, m20, m21, m22;
float thetaX, thetaY, thetaZ;
m00 = m[0][0]; m10 = m[1][0]; m20 = m[2][0];
m01 = m[0][1]; m11 = m[1][1]; m21 = m[2][1];
m22 = m[2][2];
if (m20 < 1.0f) {
if (m20 > -1.0f) {
thetaY = asinf(m20);
thetaX = atan2f(-m21, m22);
thetaZ = atan2f(-m10, m00);
} else { /* m20 == -1 */
/* Not a unique solution */
thetaY = -GLM_PI_2f;
thetaX = -atan2f(m01, m11);
thetaZ = 0.0f;
}
} else { /* m20 == +1 */
thetaY = GLM_PI_2f;
thetaX = atan2f(m01, m11);
thetaZ = 0.0f;
}
dest[0] = thetaX;
dest[1] = thetaY;
dest[2] = thetaZ;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_xyz(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, czsx, cxcz, sysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
czsx = cz * sx;
cxcz = cx * cz;
sysz = sy * sz;
dest[0][0] = cy * cz;
dest[0][1] = czsx * sy + cx * sz;
dest[0][2] = -cxcz * sy + sx * sz;
dest[1][0] = -cy * sz;
dest[1][1] = cxcz - sx * sysz;
dest[1][2] = czsx + cx * sysz;
dest[2][0] = sy;
dest[2][1] = -cy * sx;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler(vec3 angles, mat4 dest) {
glm_euler_xyz(angles, dest);
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_xzy(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, sxsy, cysx, cxsy, cxcy;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
sxsy = sx * sy;
cysx = cy * sx;
cxsy = cx * sy;
cxcy = cx * cy;
dest[0][0] = cy * cz;
dest[0][1] = sxsy + cxcy * sz;
dest[0][2] = -cxsy + cysx * sz;
dest[1][0] = -sz;
dest[1][1] = cx * cz;
dest[1][2] = cz * sx;
dest[2][0] = cz * sy;
dest[2][1] = -cysx + cxsy * sz;
dest[2][2] = cxcy + sxsy * sz;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_yxz(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, cycz, sysz, czsy, cysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
cycz = cy * cz;
sysz = sy * sz;
czsy = cz * sy;
cysz = cy * sz;
dest[0][0] = cycz + sx * sysz;
dest[0][1] = cx * sz;
dest[0][2] = -czsy + cysz * sx;
dest[1][0] = -cysz + czsy * sx;
dest[1][1] = cx * cz;
dest[1][2] = cycz * sx + sysz;
dest[2][0] = cx * sy;
dest[2][1] = -sx;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_yzx(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, sxsy, cxcy, cysx, cxsy;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
sxsy = sx * sy;
cxcy = cx * cy;
cysx = cy * sx;
cxsy = cx * sy;
dest[0][0] = cy * cz;
dest[0][1] = sz;
dest[0][2] = -cz * sy;
dest[1][0] = sxsy - cxcy * sz;
dest[1][1] = cx * cz;
dest[1][2] = cysx + cxsy * sz;
dest[2][0] = cxsy + cysx * sz;
dest[2][1] = -cz * sx;
dest[2][2] = cxcy - sxsy * sz;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_zxy(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, cycz, sxsy, cysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
cycz = cy * cz;
sxsy = sx * sy;
cysz = cy * sz;
dest[0][0] = cycz - sxsy * sz;
dest[0][1] = cz * sxsy + cysz;
dest[0][2] = -cx * sy;
dest[1][0] = -cx * sz;
dest[1][1] = cx * cz;
dest[1][2] = sx;
dest[2][0] = cz * sy + cysz * sx;
dest[2][1] = -cycz * sx + sy * sz;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_zyx(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, czsx, cxcz, sysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
czsx = cz * sx;
cxcz = cx * cz;
sysz = sy * sz;
dest[0][0] = cy * cz;
dest[0][1] = cy * sz;
dest[0][2] = -sy;
dest[1][0] = czsx * sy - cx * sz;
dest[1][1] = cxcz + sx * sysz;
dest[1][2] = cy * sx;
dest[2][0] = cxcz * sy + sx * sz;
dest[2][1] = -czsx + cx * sysz;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[in] ord euler order
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_by_order(vec3 angles, glm_euler_seq ord, mat4 dest) {
float cx, cy, cz,
sx, sy, sz;
float cycz, cysz, cysx, cxcy,
czsy, cxcz, czsx, cxsz,
sysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
cycz = cy * cz; cysz = cy * sz;
cysx = cy * sx; cxcy = cx * cy;
czsy = cz * sy; cxcz = cx * cz;
czsx = cz * sx; cxsz = cx * sz;
sysz = sy * sz;
switch (ord) {
case GLM_EULER_XZY:
dest[0][0] = cycz;
dest[0][1] = sx * sy + cx * cysz;
dest[0][2] = -cx * sy + cysx * sz;
dest[1][0] = -sz;
dest[1][1] = cxcz;
dest[1][2] = czsx;
dest[2][0] = czsy;
dest[2][1] = -cysx + cx * sysz;
dest[2][2] = cxcy + sx * sysz;
break;
case GLM_EULER_XYZ:
dest[0][0] = cycz;
dest[0][1] = czsx * sy + cxsz;
dest[0][2] = -cx * czsy + sx * sz;
dest[1][0] = -cysz;
dest[1][1] = cxcz - sx * sysz;
dest[1][2] = czsx + cx * sysz;
dest[2][0] = sy;
dest[2][1] = -cysx;
dest[2][2] = cxcy;
break;
case GLM_EULER_YXZ:
dest[0][0] = cycz + sx * sysz;
dest[0][1] = cxsz;
dest[0][2] = -czsy + cysx * sz;
dest[1][0] = czsx * sy - cysz;
dest[1][1] = cxcz;
dest[1][2] = cycz * sx + sysz;
dest[2][0] = cx * sy;
dest[2][1] = -sx;
dest[2][2] = cxcy;
break;
case GLM_EULER_YZX:
dest[0][0] = cycz;
dest[0][1] = sz;
dest[0][2] = -czsy;
dest[1][0] = sx * sy - cx * cysz;
dest[1][1] = cxcz;
dest[1][2] = cysx + cx * sysz;
dest[2][0] = cx * sy + cysx * sz;
dest[2][1] = -czsx;
dest[2][2] = cxcy - sx * sysz;
break;
case GLM_EULER_ZXY:
dest[0][0] = cycz - sx * sysz;
dest[0][1] = czsx * sy + cysz;
dest[0][2] = -cx * sy;
dest[1][0] = -cxsz;
dest[1][1] = cxcz;
dest[1][2] = sx;
dest[2][0] = czsy + cysx * sz;
dest[2][1] = -cycz * sx + sysz;
dest[2][2] = cxcy;
break;
case GLM_EULER_ZYX:
dest[0][0] = cycz;
dest[0][1] = cysz;
dest[0][2] = -sy;
dest[1][0] = czsx * sy - cxsz;
dest[1][1] = cxcz + sx * sysz;
dest[1][2] = cysx;
dest[2][0] = cx * czsy + sx * sz;
dest[2][1] = -czsx + cx * sysz;
dest[2][2] = cxcy;
break;
}
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
#endif /* cglm_euler_h */

255
include/cglm/frustum.h Normal file
View File

@ -0,0 +1,255 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_frustum_h
#define cglm_frustum_h
#include "common.h"
#include "plane.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
#define GLM_LBN 0 /* left bottom near */
#define GLM_LTN 1 /* left top near */
#define GLM_RTN 2 /* right top near */
#define GLM_RBN 3 /* right bottom near */
#define GLM_LBF 4 /* left bottom far */
#define GLM_LTF 5 /* left top far */
#define GLM_RTF 6 /* right top far */
#define GLM_RBF 7 /* right bottom far */
#define GLM_LEFT 0
#define GLM_RIGHT 1
#define GLM_BOTTOM 2
#define GLM_TOP 3
#define GLM_NEAR 4
#define GLM_FAR 5
/* you can override clip space coords
but you have to provide all with same name
e.g.: define GLM_CSCOORD_LBN {0.0f, 0.0f, 1.0f, 1.0f} */
#ifndef GLM_CUSTOM_CLIPSPACE
/* near */
#define GLM_CSCOORD_LBN {-1.0f, -1.0f, -1.0f, 1.0f}
#define GLM_CSCOORD_LTN {-1.0f, 1.0f, -1.0f, 1.0f}
#define GLM_CSCOORD_RTN { 1.0f, 1.0f, -1.0f, 1.0f}
#define GLM_CSCOORD_RBN { 1.0f, -1.0f, -1.0f, 1.0f}
/* far */
#define GLM_CSCOORD_LBF {-1.0f, -1.0f, 1.0f, 1.0f}
#define GLM_CSCOORD_LTF {-1.0f, 1.0f, 1.0f, 1.0f}
#define GLM_CSCOORD_RTF { 1.0f, 1.0f, 1.0f, 1.0f}
#define GLM_CSCOORD_RBF { 1.0f, -1.0f, 1.0f, 1.0f}
#endif
/*!
* @brief extracts view frustum planes
*
* planes' space:
* 1- if m = proj: View Space
* 2- if m = viewProj: World Space
* 3- if m = MVP: Object Space
*
* You probably want to extract planes in world space so use viewProj as m
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
*
* Exracted planes order: [left, right, bottom, top, near, far]
*
* @param[in] m matrix (see brief)
* @param[out] dest extracted view frustum planes (see brief)
*/
CGLM_INLINE
void
glm_frustum_planes(mat4 m, vec4 dest[6]) {
mat4 t;
glm_mat4_transpose_to(m, t);
glm_vec4_add(t[3], t[0], dest[0]); /* left */
glm_vec4_sub(t[3], t[0], dest[1]); /* right */
glm_vec4_add(t[3], t[1], dest[2]); /* bottom */
glm_vec4_sub(t[3], t[1], dest[3]); /* top */
glm_vec4_add(t[3], t[2], dest[4]); /* near */
glm_vec4_sub(t[3], t[2], dest[5]); /* far */
glm_plane_normalize(dest[0]);
glm_plane_normalize(dest[1]);
glm_plane_normalize(dest[2]);
glm_plane_normalize(dest[3]);
glm_plane_normalize(dest[4]);
glm_plane_normalize(dest[5]);
}
/*!
* @brief extracts view frustum corners using clip-space coordinates
*
* corners' space:
* 1- if m = invViewProj: World Space
* 2- if m = invMVP: Object Space
*
* You probably want to extract corners in world space so use invViewProj
* Computing invViewProj:
* glm_mat4_mul(proj, view, viewProj);
* ...
* glm_mat4_inv(viewProj, invViewProj);
*
* if you have a near coord at i index, you can get it's far coord by i + 4
*
* Find center coordinates:
* for (j = 0; j < 4; j++) {
* glm_vec3_center(corners[i], corners[i + 4], centerCorners[i]);
* }
*
* @param[in] invMat matrix (see brief)
* @param[out] dest exracted view frustum corners (see brief)
*/
CGLM_INLINE
void
glm_frustum_corners(mat4 invMat, vec4 dest[8]) {
vec4 c[8];
/* indexOf(nearCoord) = indexOf(farCoord) + 4 */
vec4 csCoords[8] = {
GLM_CSCOORD_LBN,
GLM_CSCOORD_LTN,
GLM_CSCOORD_RTN,
GLM_CSCOORD_RBN,
GLM_CSCOORD_LBF,
GLM_CSCOORD_LTF,
GLM_CSCOORD_RTF,
GLM_CSCOORD_RBF
};
glm_mat4_mulv(invMat, csCoords[0], c[0]);
glm_mat4_mulv(invMat, csCoords[1], c[1]);
glm_mat4_mulv(invMat, csCoords[2], c[2]);
glm_mat4_mulv(invMat, csCoords[3], c[3]);
glm_mat4_mulv(invMat, csCoords[4], c[4]);
glm_mat4_mulv(invMat, csCoords[5], c[5]);
glm_mat4_mulv(invMat, csCoords[6], c[6]);
glm_mat4_mulv(invMat, csCoords[7], c[7]);
glm_vec4_scale(c[0], 1.0f / c[0][3], dest[0]);
glm_vec4_scale(c[1], 1.0f / c[1][3], dest[1]);
glm_vec4_scale(c[2], 1.0f / c[2][3], dest[2]);
glm_vec4_scale(c[3], 1.0f / c[3][3], dest[3]);
glm_vec4_scale(c[4], 1.0f / c[4][3], dest[4]);
glm_vec4_scale(c[5], 1.0f / c[5][3], dest[5]);
glm_vec4_scale(c[6], 1.0f / c[6][3], dest[6]);
glm_vec4_scale(c[7], 1.0f / c[7][3], dest[7]);
}
/*!
* @brief finds center of view frustum
*
* @param[in] corners view frustum corners
* @param[out] dest view frustum center
*/
CGLM_INLINE
void
glm_frustum_center(vec4 corners[8], vec4 dest) {
vec4 center;
glm_vec4_copy(corners[0], center);
glm_vec4_add(corners[1], center, center);
glm_vec4_add(corners[2], center, center);
glm_vec4_add(corners[3], center, center);
glm_vec4_add(corners[4], center, center);
glm_vec4_add(corners[5], center, center);
glm_vec4_add(corners[6], center, center);
glm_vec4_add(corners[7], center, center);
glm_vec4_scale(center, 0.125f, dest);
}
/*!
* @brief finds bounding box of frustum relative to given matrix e.g. view mat
*
* @param[in] corners view frustum corners
* @param[in] m matrix to convert existing conners
* @param[out] box bounding box as array [min, max]
*/
CGLM_INLINE
void
glm_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]) {
vec4 v;
vec3 min, max;
int i;
glm_vec3_broadcast(FLT_MAX, min);
glm_vec3_broadcast(-FLT_MAX, max);
for (i = 0; i < 8; i++) {
glm_mat4_mulv(m, corners[i], v);
min[0] = glm_min(min[0], v[0]);
min[1] = glm_min(min[1], v[1]);
min[2] = glm_min(min[2], v[2]);
max[0] = glm_max(max[0], v[0]);
max[1] = glm_max(max[1], v[1]);
max[2] = glm_max(max[2], v[2]);
}
glm_vec3_copy(min, box[0]);
glm_vec3_copy(max, box[1]);
}
/*!
* @brief finds planes corners which is between near and far planes (parallel)
*
* this will be helpful if you want to split a frustum e.g. CSM/PSSM. This will
* find planes' corners but you will need to one more plane.
* Actually you have it, it is near, far or created previously with this func ;)
*
* @param[in] corners view frustum corners
* @param[in] splitDist split distance
* @param[in] farDist far distance (zFar)
* @param[out] planeCorners plane corners [LB, LT, RT, RB]
*/
CGLM_INLINE
void
glm_frustum_corners_at(vec4 corners[8],
float splitDist,
float farDist,
vec4 planeCorners[4]) {
vec4 corner;
float dist, sc;
/* because distance and scale is same for all */
dist = glm_vec3_distance(corners[GLM_RTF], corners[GLM_RTN]);
sc = dist * (splitDist / farDist);
/* left bottom */
glm_vec4_sub(corners[GLM_LBF], corners[GLM_LBN], corner);
glm_vec4_scale_as(corner, sc, corner);
glm_vec4_add(corners[GLM_LBN], corner, planeCorners[0]);
/* left top */
glm_vec4_sub(corners[GLM_LTF], corners[GLM_LTN], corner);
glm_vec4_scale_as(corner, sc, corner);
glm_vec4_add(corners[GLM_LTN], corner, planeCorners[1]);
/* right top */
glm_vec4_sub(corners[GLM_RTF], corners[GLM_RTN], corner);
glm_vec4_scale_as(corner, sc, corner);
glm_vec4_add(corners[GLM_RTN], corner, planeCorners[2]);
/* right bottom */
glm_vec4_sub(corners[GLM_RBF], corners[GLM_RBN], corner);
glm_vec4_scale_as(corner, sc, corner);
glm_vec4_add(corners[GLM_RBN], corner, planeCorners[3]);
}
#endif /* cglm_frustum_h */

345
include/cglm/io.h Normal file
View File

@ -0,0 +1,345 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_mat4_print(mat4 matrix, FILE *ostream);
CGLM_INLINE void glm_mat3_print(mat3 matrix, FILE *ostream);
CGLM_INLINE void glm_vec4_print(vec4 vec, FILE *ostream);
CGLM_INLINE void glm_vec3_print(vec3 vec, FILE *ostream);
CGLM_INLINE void glm_ivec3_print(ivec3 vec, FILE *ostream);
CGLM_INLINE void glm_versor_print(versor vec, FILE *ostream);
*/
/*
cglm tried to enable print functions in debug mode and disable them in
release/production mode to eliminate printing costs.
if you need to force enable then define CGLM_DEFINE_PRINTS macro not DEBUG one
Print functions are enabled if:
- DEBUG or _DEBUG macro is defined (mostly defined automatically in debugging)
- CGLM_DEFINE_PRINTS macro is defined including release/production
which makes enabled printing always
- glmc_ calls for io are always prints
*/
/* DEPRECATED: CGLM_NO_PRINTS_NOOP (use CGLM_DEFINE_PRINTS) */
#ifndef cglm_io_h
#define cglm_io_h
#if defined(DEBUG) || defined(_DEBUG) \
|| defined(CGLM_DEFINE_PRINTS) || defined(CGLM_LIB_SRC) \
|| defined(CGLM_NO_PRINTS_NOOP)
#include "common.h"
#include "util.h"
#include <stdio.h>
#include <stdlib.h>
#ifndef CGLM_PRINT_PRECISION
# define CGLM_PRINT_PRECISION 5
#endif
#ifndef CGLM_PRINT_MAX_TO_SHORT
# define CGLM_PRINT_MAX_TO_SHORT 1e5f
#endif
#ifndef CGLM_PRINT_COLOR
# define CGLM_PRINT_COLOR "\033[36m"
#endif
#ifndef CGLM_PRINT_COLOR_RESET
# define CGLM_PRINT_COLOR_RESET "\033[0m"
#endif
CGLM_INLINE
void
glm_mat4_print(mat4 matrix,
FILE * __restrict ostream) {
char buff[16];
int i, j, cw[4], cwi;
#define m 4
#define n 4
fprintf(ostream, "Matrix (float%dx%d): " CGLM_PRINT_COLOR "\n" , m, n);
cw[0] = cw[1] = cw[2] = cw[3] = 0;
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
if (matrix[i][j] < CGLM_PRINT_MAX_TO_SHORT)
cwi = sprintf(buff, "% .*f", CGLM_PRINT_PRECISION, (double)matrix[i][j]);
else
cwi = sprintf(buff, "% g", (double)matrix[i][j]);
cw[i] = GLM_MAX(cw[i], cwi);
}
}
for (i = 0; i < m; i++) {
fprintf(ostream, " |");
for (j = 0; j < n; j++)
if (matrix[i][j] < CGLM_PRINT_MAX_TO_SHORT)
fprintf(ostream, " % *.*f", cw[j], CGLM_PRINT_PRECISION, (double)matrix[j][i]);
else
fprintf(ostream, " % *g", cw[j], (double)matrix[j][i]);
fprintf(ostream, " |\n");
}
fprintf(ostream, CGLM_PRINT_COLOR_RESET "\n");
#undef m
#undef n
}
CGLM_INLINE
void
glm_mat3_print(mat3 matrix,
FILE * __restrict ostream) {
char buff[16];
int i, j, cw[4], cwi;
#define m 3
#define n 3
fprintf(ostream, "Matrix (float%dx%d): " CGLM_PRINT_COLOR "\n", m, n);
cw[0] = cw[1] = cw[2] = 0;
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
if (matrix[i][j] < CGLM_PRINT_MAX_TO_SHORT)
cwi = sprintf(buff, "% .*f", CGLM_PRINT_PRECISION, (double)matrix[i][j]);
else
cwi = sprintf(buff, "% g", (double)matrix[i][j]);
cw[i] = GLM_MAX(cw[i], cwi);
}
}
for (i = 0; i < m; i++) {
fprintf(ostream, " |");
for (j = 0; j < n; j++)
if (matrix[i][j] < CGLM_PRINT_MAX_TO_SHORT)
fprintf(ostream, " % *.*f", cw[j], CGLM_PRINT_PRECISION, (double)matrix[j][i]);
else
fprintf(ostream, " % *g", cw[j], (double)matrix[j][i]);
fprintf(ostream, " |\n");
}
fprintf(ostream, CGLM_PRINT_COLOR_RESET "\n");
#undef m
#undef n
}
CGLM_INLINE
void
glm_mat2_print(mat2 matrix,
FILE * __restrict ostream) {
char buff[16];
int i, j, cw[4], cwi;
#define m 2
#define n 2
fprintf(ostream, "Matrix (float%dx%d): " CGLM_PRINT_COLOR "\n", m, n);
cw[0] = cw[1] = 0;
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
if (matrix[i][j] < CGLM_PRINT_MAX_TO_SHORT)
cwi = sprintf(buff, "% .*f", CGLM_PRINT_PRECISION, (double)matrix[i][j]);
else
cwi = sprintf(buff, "% g", (double)matrix[i][j]);
cw[i] = GLM_MAX(cw[i], cwi);
}
}
for (i = 0; i < m; i++) {
fprintf(ostream, " |");
for (j = 0; j < n; j++)
if (matrix[i][j] < CGLM_PRINT_MAX_TO_SHORT)
fprintf(ostream, " % *.*f", cw[j], CGLM_PRINT_PRECISION, (double)matrix[j][i]);
else
fprintf(ostream, " % *g", cw[j], (double)matrix[j][i]);
fprintf(ostream, " |\n");
}
fprintf(ostream, CGLM_PRINT_COLOR_RESET "\n");
#undef m
#undef n
}
CGLM_INLINE
void
glm_vec4_print(vec4 vec,
FILE * __restrict ostream) {
int i;
#define m 4
fprintf(ostream, "Vector (float%d): " CGLM_PRINT_COLOR "\n (", m);
for (i = 0; i < m; i++) {
if (vec[i] < CGLM_PRINT_MAX_TO_SHORT)
fprintf(ostream, " % .*f", CGLM_PRINT_PRECISION, (double)vec[i]);
else
fprintf(ostream, " % g", (double)vec[i]);
}
fprintf(ostream, " )" CGLM_PRINT_COLOR_RESET "\n\n");
#undef m
}
CGLM_INLINE
void
glm_vec3_print(vec3 vec,
FILE * __restrict ostream) {
int i;
#define m 3
fprintf(ostream, "Vector (float%d): " CGLM_PRINT_COLOR "\n (", m);
for (i = 0; i < m; i++) {
if (vec[i] < CGLM_PRINT_MAX_TO_SHORT)
fprintf(ostream, " % .*f", CGLM_PRINT_PRECISION, (double)vec[i]);
else
fprintf(ostream, " % g", (double)vec[i]);
}
fprintf(ostream, " )" CGLM_PRINT_COLOR_RESET "\n\n");
#undef m
}
CGLM_INLINE
void
glm_ivec3_print(ivec3 vec,
FILE * __restrict ostream) {
int i;
#define m 3
fprintf(ostream, "Vector (int%d): " CGLM_PRINT_COLOR "\n (", m);
for (i = 0; i < m; i++)
fprintf(ostream, " % d", vec[i]);
fprintf(ostream, " )" CGLM_PRINT_COLOR_RESET "\n\n");
#undef m
}
CGLM_INLINE
void
glm_vec2_print(vec2 vec,
FILE * __restrict ostream) {
int i;
#define m 2
fprintf(ostream, "Vector (float%d): " CGLM_PRINT_COLOR "\n (", m);
for (i = 0; i < m; i++) {
if (vec[i] < CGLM_PRINT_MAX_TO_SHORT)
fprintf(ostream, " % .*f", CGLM_PRINT_PRECISION, (double)vec[i]);
else
fprintf(ostream, " % g", (double)vec[i]);
}
fprintf(ostream, " )" CGLM_PRINT_COLOR_RESET "\n\n");
#undef m
}
CGLM_INLINE
void
glm_versor_print(versor vec,
FILE * __restrict ostream) {
int i;
#define m 4
fprintf(ostream, "Quaternion (float%d): " CGLM_PRINT_COLOR "\n (", m);
for (i = 0; i < m; i++) {
if (vec[i] < CGLM_PRINT_MAX_TO_SHORT)
fprintf(ostream, " % .*f", CGLM_PRINT_PRECISION, (double)vec[i]);
else
fprintf(ostream, " % g", (double)vec[i]);
}
fprintf(ostream, " )" CGLM_PRINT_COLOR_RESET "\n\n");
#undef m
}
CGLM_INLINE
void
glm_aabb_print(vec3 bbox[2],
const char * __restrict tag,
FILE * __restrict ostream) {
int i, j;
#define m 3
fprintf(ostream, "AABB (%s): " CGLM_PRINT_COLOR "\n", tag ? tag: "float");
for (i = 0; i < 2; i++) {
fprintf(ostream, " (");
for (j = 0; j < m; j++) {
if (bbox[i][j] < CGLM_PRINT_MAX_TO_SHORT)
fprintf(ostream, " % .*f", CGLM_PRINT_PRECISION, (double)bbox[i][j]);
else
fprintf(ostream, " % g", (double)bbox[i][j]);
}
fprintf(ostream, " )\n");
}
fprintf(ostream, CGLM_PRINT_COLOR_RESET "\n");
#undef m
}
#else
#include "common.h"
#include <stdio.h>
#include <stdlib.h>
/* NOOP: Remove print from DEBUG */
#define glm_mat4_print(v, s) (void)v; (void)s;
#define glm_mat3_print(v, s) (void)v; (void)s;
#define glm_mat2_print(v, s) (void)v; (void)s;
#define glm_vec4_print(v, s) (void)v; (void)s;
#define glm_vec3_print(v, s) (void)v; (void)s;
#define glm_ivec3_print(v, s) (void)v; (void)s;
#define glm_vec2_print(v, s) (void)v; (void)s;
#define glm_versor_print(v, s) (void)v; (void)s;
#define glm_aabb_print(v, t, s) (void)v; (void)t; (void)s;
#endif
#endif /* cglm_io_h */

256
include/cglm/ivec2.h Normal file
View File

@ -0,0 +1,256 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
FUNCTIONS:
CGLM_INLINE void glm_ivec2(int * __restrict v, ivec2 dest)
CGLM_INLINE void glm_ivec2_copy(ivec2 a, ivec2 dest)
CGLM_INLINE void glm_ivec2_zero(ivec2 v)
CGLM_INLINE void glm_ivec2_one(ivec2 v)
CGLM_INLINE void glm_ivec2_add(ivec2 a, ivec2 b, ivec2 dest)
CGLM_INLINE void glm_ivec2_adds(ivec2 v, int s, ivec2 dest)
CGLM_INLINE void glm_ivec2_sub(ivec2 a, ivec2 b, ivec2 dest)
CGLM_INLINE void glm_ivec2_subs(ivec2 v, int s, ivec2 dest)
CGLM_INLINE void glm_ivec2_mul(ivec2 a, ivec2 b, ivec2 dest)
CGLM_INLINE void glm_ivec2_scale(ivec2 v, int s, ivec2 dest)
CGLM_INLINE int glm_ivec2_distance2(ivec2 a, ivec2 b)
CGLM_INLINE float glm_ivec2_distance(ivec2 a, ivec2 b)
CGLM_INLINE void glm_ivec2_maxv(ivec2 a, ivec2 b, ivec2 dest)
CGLM_INLINE void glm_ivec2_minv(ivec2 a, ivec2 b, ivec2 dest)
CGLM_INLINE void glm_ivec2_clamp(ivec2 v, int minVal, int maxVal)
CGLM_INLINE void glm_ivec2_abs(ivec2 v, ivec2 dest)
*/
#ifndef cglm_ivec2_h
#define cglm_ivec2_h
#include "common.h"
/*!
* @brief init ivec2 using vec3 or vec4
*
* @param[in] v vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec2(int * __restrict v, ivec2 dest) {
dest[0] = v[0];
dest[1] = v[1];
}
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] a source vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec2_copy(ivec2 a, ivec2 dest) {
dest[0] = a[0];
dest[1] = a[1];
}
/*!
* @brief set all members of [v] to zero
*
* @param[out] v vector
*/
CGLM_INLINE
void
glm_ivec2_zero(ivec2 v) {
v[0] = v[1] = 0;
}
/*!
* @brief set all members of [v] to one
*
* @param[out] v vector
*/
CGLM_INLINE
void
glm_ivec2_one(ivec2 v) {
v[0] = v[1] = 1;
}
/*!
* @brief add vector [a] to vector [b] and store result in [dest]
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec2_add(ivec2 a, ivec2 b, ivec2 dest) {
dest[0] = a[0] + b[0];
dest[1] = a[1] + b[1];
}
/*!
* @brief add scalar s to vector [v] and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec2_adds(ivec2 v, int s, ivec2 dest) {
dest[0] = v[0] + s;
dest[1] = v[1] + s;
}
/*!
* @brief subtract vector [b] from vector [a] and store result in [dest]
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec2_sub(ivec2 a, ivec2 b, ivec2 dest) {
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
}
/*!
* @brief subtract scalar s from vector [v] and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec2_subs(ivec2 v, int s, ivec2 dest) {
dest[0] = v[0] - s;
dest[1] = v[1] - s;
}
/*!
* @brief multiply vector [a] with vector [b] and store result in [dest]
*
* @param[in] a frist vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec2_mul(ivec2 a, ivec2 b, ivec2 dest) {
dest[0] = a[0] * b[0];
dest[1] = a[1] * b[1];
}
/*!
* @brief multiply vector [a] with scalar s and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec2_scale(ivec2 v, int s, ivec2 dest) {
dest[0] = v[0] * s;
dest[1] = v[1] * s;
}
/*!
* @brief squared distance between two vectors
*
* @param[in] a first vector
* @param[in] b second vector
* @return returns squared distance (distance * distance)
*/
CGLM_INLINE
int
glm_ivec2_distance2(ivec2 a, ivec2 b) {
int xd, yd;
xd = a[0] - b[0];
yd = a[1] - b[1];
return xd * xd + yd * yd;
}
/*!
* @brief distance between two vectors
*
* @param[in] a first vector
* @param[in] b second vector
* @return returns distance
*/
CGLM_INLINE
float
glm_ivec2_distance(ivec2 a, ivec2 b) {
return sqrtf((float)glm_ivec2_distance2(a, b));
}
/*!
* @brief set each member of dest to greater of vector a and b
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec2_maxv(ivec2 a, ivec2 b, ivec2 dest) {
dest[0] = a[0] > b[0] ? a[0] : b[0];
dest[1] = a[1] > b[1] ? a[1] : b[1];
}
/*!
* @brief set each member of dest to lesser of vector a and b
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec2_minv(ivec2 a, ivec2 b, ivec2 dest) {
dest[0] = a[0] < b[0] ? a[0] : b[0];
dest[1] = a[1] < b[1] ? a[1] : b[1];
}
/*!
* @brief clamp each member of [v] between minVal and maxVal (inclusive)
*
* @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
CGLM_INLINE
void
glm_ivec2_clamp(ivec2 v, int minVal, int maxVal) {
if (v[0] < minVal)
v[0] = minVal;
else if(v[0] > maxVal)
v[0] = maxVal;
if (v[1] < minVal)
v[1] = minVal;
else if(v[1] > maxVal)
v[1] = maxVal;
}
/*!
* @brief absolute value of v
*
* @param[in] v vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec2_abs(ivec2 v, ivec2 dest) {
dest[0] = abs(v[0]);
dest[1] = abs(v[1]);
}
#endif /* cglm_ivec2_h */

273
include/cglm/ivec3.h Normal file
View File

@ -0,0 +1,273 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
FUNCTIONS:
CGLM_INLINE void glm_ivec3(ivec4 v4, ivec3 dest)
CGLM_INLINE void glm_ivec3_copy(ivec3 a, ivec3 dest)
CGLM_INLINE void glm_ivec3_zero(ivec3 v)
CGLM_INLINE void glm_ivec3_one(ivec3 v)
CGLM_INLINE void glm_ivec3_add(ivec3 a, ivec3 b, ivec3 dest)
CGLM_INLINE void glm_ivec3_adds(ivec3 v, int s, ivec3 dest)
CGLM_INLINE void glm_ivec3_sub(ivec3 a, ivec3 b, ivec3 dest)
CGLM_INLINE void glm_ivec3_subs(ivec3 v, int s, ivec3 dest)
CGLM_INLINE void glm_ivec3_mul(ivec3 a, ivec3 b, ivec3 dest)
CGLM_INLINE void glm_ivec3_scale(ivec3 v, int s, ivec3 dest)
CGLM_INLINE int glm_ivec3_distance2(ivec3 a, ivec3 b)
CGLM_INLINE float glm_ivec3_distance(ivec3 a, ivec3 b)
CGLM_INLINE void glm_ivec3_maxv(ivec3 a, ivec3 b, ivec3 dest)
CGLM_INLINE void glm_ivec3_minv(ivec3 a, ivec3 b, ivec3 dest)
CGLM_INLINE void glm_ivec3_clamp(ivec3 v, int minVal, int maxVal)
CGLM_INLINE void glm_ivec3_abs(ivec3 v, ivec3 dest)
*/
#ifndef cglm_ivec3_h
#define cglm_ivec3_h
#include "common.h"
/*!
* @brief init ivec3 using ivec4
*
* @param[in] v4 vector4
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec3(ivec4 v4, ivec3 dest) {
dest[0] = v4[0];
dest[1] = v4[1];
dest[2] = v4[2];
}
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] a source vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec3_copy(ivec3 a, ivec3 dest) {
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
}
/*!
* @brief set all members of [v] to zero
*
* @param[out] v vector
*/
CGLM_INLINE
void
glm_ivec3_zero(ivec3 v) {
v[0] = v[1] = v[2] = 0;
}
/*!
* @brief set all members of [v] to one
*
* @param[out] v vector
*/
CGLM_INLINE
void
glm_ivec3_one(ivec3 v) {
v[0] = v[1] = v[2] = 1;
}
/*!
* @brief add vector [a] to vector [b] and store result in [dest]
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec3_add(ivec3 a, ivec3 b, ivec3 dest) {
dest[0] = a[0] + b[0];
dest[1] = a[1] + b[1];
dest[2] = a[2] + b[2];
}
/*!
* @brief add scalar s to vector [v] and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec3_adds(ivec3 v, int s, ivec3 dest) {
dest[0] = v[0] + s;
dest[1] = v[1] + s;
dest[2] = v[2] + s;
}
/*!
* @brief subtract vector [b] from vector [a] and store result in [dest]
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec3_sub(ivec3 a, ivec3 b, ivec3 dest) {
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
dest[2] = a[2] - b[2];
}
/*!
* @brief subtract scalar s from vector [v] and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec3_subs(ivec3 v, int s, ivec3 dest) {
dest[0] = v[0] - s;
dest[1] = v[1] - s;
dest[2] = v[2] - s;
}
/*!
* @brief multiply vector [a] with vector [b] and store result in [dest]
*
* @param[in] a frist vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec3_mul(ivec3 a, ivec3 b, ivec3 dest) {
dest[0] = a[0] * b[0];
dest[1] = a[1] * b[1];
dest[2] = a[2] * b[2];
}
/*!
* @brief multiply vector [a] with scalar s and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec3_scale(ivec3 v, int s, ivec3 dest) {
dest[0] = v[0] * s;
dest[1] = v[1] * s;
dest[2] = v[2] * s;
}
/*!
* @brief squared distance between two vectors
*
* @param[in] a first vector
* @param[in] b second vector
* @return returns squared distance (distance * distance)
*/
CGLM_INLINE
int
glm_ivec3_distance2(ivec3 a, ivec3 b) {
int xd, yd, zd;
xd = a[0] - b[0];
yd = a[1] - b[1];
zd = a[2] - b[2];
return xd * xd + yd * yd + zd * zd;
}
/*!
* @brief distance between two vectors
*
* @param[in] a first vector
* @param[in] b second vector
* @return returns distance
*/
CGLM_INLINE
float
glm_ivec3_distance(ivec3 a, ivec3 b) {
return sqrtf((float)glm_ivec3_distance2(a, b));
}
/*!
* @brief set each member of dest to greater of vector a and b
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec3_maxv(ivec3 a, ivec3 b, ivec3 dest) {
dest[0] = a[0] > b[0] ? a[0] : b[0];
dest[1] = a[1] > b[1] ? a[1] : b[1];
dest[2] = a[2] > b[2] ? a[2] : b[2];
}
/*!
* @brief set each member of dest to lesser of vector a and b
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec3_minv(ivec3 a, ivec3 b, ivec3 dest) {
dest[0] = a[0] < b[0] ? a[0] : b[0];
dest[1] = a[1] < b[1] ? a[1] : b[1];
dest[2] = a[2] < b[2] ? a[2] : b[2];
}
/*!
* @brief clamp each member of [v] between minVal and maxVal (inclusive)
*
* @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
CGLM_INLINE
void
glm_ivec3_clamp(ivec3 v, int minVal, int maxVal) {
if (v[0] < minVal)
v[0] = minVal;
else if(v[0] > maxVal)
v[0] = maxVal;
if (v[1] < minVal)
v[1] = minVal;
else if(v[1] > maxVal)
v[1] = maxVal;
if (v[2] < minVal)
v[2] = minVal;
else if(v[2] > maxVal)
v[2] = maxVal;
}
/*!
* @brief absolute value of v
*
* @param[in] v vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec3_abs(ivec3 v, ivec3 dest) {
dest[0] = abs(v[0]);
dest[1] = abs(v[1]);
dest[2] = abs(v[2]);
}
#endif /* cglm_ivec3_h */

291
include/cglm/ivec4.h Normal file
View File

@ -0,0 +1,291 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
FUNCTIONS:
CGLM_INLINE void glm_ivec4(ivec3 v3, int last, ivec4 dest)
CGLM_INLINE void glm_ivec4_copy(ivec4 a, ivec4 dest)
CGLM_INLINE void glm_ivec4_zero(ivec4 v)
CGLM_INLINE void glm_ivec4_one(ivec4 v)
CGLM_INLINE void glm_ivec4_add(ivec4 a, ivec4 b, ivec4 dest)
CGLM_INLINE void glm_ivec4_adds(ivec4 v, int s, ivec4 dest)
CGLM_INLINE void glm_ivec4_sub(ivec4 a, ivec4 b, ivec4 dest)
CGLM_INLINE void glm_ivec4_subs(ivec4 v, int s, ivec4 dest)
CGLM_INLINE void glm_ivec4_mul(ivec4 a, ivec4 b, ivec4 dest)
CGLM_INLINE void glm_ivec4_scale(ivec4 v, int s, ivec4 dest)
CGLM_INLINE int glm_ivec4_distance2(ivec4 a, ivec4 b)
CGLM_INLINE float glm_ivec4_distance(ivec4 a, ivec4 b)
CGLM_INLINE void glm_ivec4_maxv(ivec4 a, ivec4 b, ivec4 dest)
CGLM_INLINE void glm_ivec4_minv(ivec4 a, ivec4 b, ivec4 dest)
CGLM_INLINE void glm_ivec4_clamp(ivec4 v, int minVal, int maxVal)
CGLM_INLINE void glm_ivec4_abs(ivec4 v, ivec4 dest)
*/
#ifndef cglm_ivec4_h
#define cglm_ivec4_h
#include "common.h"
/*!
* @brief init ivec4 using ivec3
*
* @param[in] v3 vector3
* @param[in] last last item
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec4(ivec3 v3, int last, ivec4 dest) {
dest[0] = v3[0];
dest[1] = v3[1];
dest[2] = v3[2];
dest[3] = last;
}
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] a source vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec4_copy(ivec4 a, ivec4 dest) {
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
dest[3] = a[3];
}
/*!
* @brief set all members of [v] to zero
*
* @param[out] v vector
*/
CGLM_INLINE
void
glm_ivec4_zero(ivec4 v) {
v[0] = v[1] = v[2] = v[3] = 0;
}
/*!
* @brief set all members of [v] to one
*
* @param[out] v vector
*/
CGLM_INLINE
void
glm_ivec4_one(ivec4 v) {
v[0] = v[1] = v[2] = v[3] = 1;
}
/*!
* @brief add vector [a] to vector [b] and store result in [dest]
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec4_add(ivec4 a, ivec4 b, ivec4 dest) {
dest[0] = a[0] + b[0];
dest[1] = a[1] + b[1];
dest[2] = a[2] + b[2];
dest[3] = a[3] + b[3];
}
/*!
* @brief add scalar s to vector [v] and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec4_adds(ivec4 v, int s, ivec4 dest) {
dest[0] = v[0] + s;
dest[1] = v[1] + s;
dest[2] = v[2] + s;
dest[3] = v[3] + s;
}
/*!
* @brief subtract vector [b] from vector [a] and store result in [dest]
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec4_sub(ivec4 a, ivec4 b, ivec4 dest) {
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
dest[2] = a[2] - b[2];
dest[3] = a[3] - b[3];
}
/*!
* @brief subtract scalar s from vector [v] and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec4_subs(ivec4 v, int s, ivec4 dest) {
dest[0] = v[0] - s;
dest[1] = v[1] - s;
dest[2] = v[2] - s;
dest[3] = v[3] - s;
}
/*!
* @brief multiply vector [a] with vector [b] and store result in [dest]
*
* @param[in] a frist vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec4_mul(ivec4 a, ivec4 b, ivec4 dest) {
dest[0] = a[0] * b[0];
dest[1] = a[1] * b[1];
dest[2] = a[2] * b[2];
dest[3] = a[3] * b[3];
}
/*!
* @brief multiply vector [a] with scalar s and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec4_scale(ivec4 v, int s, ivec4 dest) {
dest[0] = v[0] * s;
dest[1] = v[1] * s;
dest[2] = v[2] * s;
dest[3] = v[3] * s;
}
/*!
* @brief squared distance between two vectors
*
* @param[in] a first vector
* @param[in] b second vector
* @return returns squared distance (distance * distance)
*/
CGLM_INLINE
int
glm_ivec4_distance2(ivec4 a, ivec4 b) {
int xd, yd, zd, wd;
xd = a[0] - b[0];
yd = a[1] - b[1];
zd = a[2] - b[2];
wd = a[3] - b[3];
return xd * xd + yd * yd + zd * zd + wd * wd;
}
/*!
* @brief distance between two vectors
*
* @param[in] a first vector
* @param[in] b second vector
* @return returns distance
*/
CGLM_INLINE
float
glm_ivec4_distance(ivec4 a, ivec4 b) {
return sqrtf((float)glm_ivec4_distance2(a, b));
}
/*!
* @brief set each member of dest to greater of vector a and b
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec4_maxv(ivec4 a, ivec4 b, ivec4 dest) {
dest[0] = a[0] > b[0] ? a[0] : b[0];
dest[1] = a[1] > b[1] ? a[1] : b[1];
dest[2] = a[2] > b[2] ? a[2] : b[2];
dest[3] = a[3] > b[3] ? a[3] : b[3];
}
/*!
* @brief set each member of dest to lesser of vector a and b
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec4_minv(ivec4 a, ivec4 b, ivec4 dest) {
dest[0] = a[0] < b[0] ? a[0] : b[0];
dest[1] = a[1] < b[1] ? a[1] : b[1];
dest[2] = a[2] < b[2] ? a[2] : b[2];
dest[3] = a[3] < b[3] ? a[3] : b[3];
}
/*!
* @brief clamp each member of [v] between minVal and maxVal (inclusive)
*
* @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
CGLM_INLINE
void
glm_ivec4_clamp(ivec4 v, int minVal, int maxVal) {
if (v[0] < minVal)
v[0] = minVal;
else if(v[0] > maxVal)
v[0] = maxVal;
if (v[1] < minVal)
v[1] = minVal;
else if(v[1] > maxVal)
v[1] = maxVal;
if (v[2] < minVal)
v[2] = minVal;
else if(v[2] > maxVal)
v[2] = maxVal;
if (v[3] < minVal)
v[3] = minVal;
else if(v[3] > maxVal)
v[3] = maxVal;
}
/*!
* @brief absolute value of v
*
* @param[in] v vector
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_ivec4_abs(ivec4 v, ivec4 dest) {
dest[0] = abs(v[0]);
dest[1] = abs(v[1]);
dest[2] = abs(v[2]);
dest[3] = abs(v[3]);
}
#endif /* cglm_ivec4_h */

337
include/cglm/mat2.h Normal file
View File

@ -0,0 +1,337 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Macros:
GLM_MAT2_IDENTITY_INIT
GLM_MAT2_ZERO_INIT
GLM_MAT2_IDENTITY
GLM_MAT2_ZERO
Functions:
CGLM_INLINE void glm_mat2_copy(mat2 mat, mat2 dest)
CGLM_INLINE void glm_mat2_identity(mat2 mat)
CGLM_INLINE void glm_mat2_identity_array(mat2 * restrict mat, size_t count)
CGLM_INLINE void glm_mat2_zero(mat2 mat)
CGLM_INLINE void glm_mat2_mul(mat2 m1, mat2 m2, mat2 dest)
CGLM_INLINE void glm_mat2_transpose_to(mat2 m, mat2 dest)
CGLM_INLINE void glm_mat2_transpose(mat2 m)
CGLM_INLINE void glm_mat2_mulv(mat2 m, vec2 v, vec2 dest)
CGLM_INLINE float glm_mat2_trace(mat2 m)
CGLM_INLINE void glm_mat2_scale(mat2 m, float s)
CGLM_INLINE float glm_mat2_det(mat2 mat)
CGLM_INLINE void glm_mat2_inv(mat2 mat, mat2 dest)
CGLM_INLINE void glm_mat2_swap_col(mat2 mat, int col1, int col2)
CGLM_INLINE void glm_mat2_swap_row(mat2 mat, int row1, int row2)
CGLM_INLINE float glm_mat2_rmc(vec2 r, mat2 m, vec2 c)
*/
#ifndef cglm_mat2_h
#define cglm_mat2_h
#include "common.h"
#include "vec2.h"
#ifdef CGLM_SSE_FP
# include "simd/sse2/mat2.h"
#endif
#ifdef CGLM_NEON_FP
# include "simd/neon/mat2.h"
#endif
#define GLM_MAT2_IDENTITY_INIT {{1.0f, 0.0f}, {0.0f, 1.0f}}
#define GLM_MAT2_ZERO_INIT {{0.0f, 0.0f}, {0.0f, 0.0f}}
/* for C only */
#define GLM_MAT2_IDENTITY ((mat2)GLM_MAT2_IDENTITY_INIT)
#define GLM_MAT2_ZERO ((mat2)GLM_MAT2_ZERO_INIT)
/*!
* @brief copy all members of [mat] to [dest]
*
* @param[in] mat source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_mat2_copy(mat2 mat, mat2 dest) {
glm_vec4_ucopy(mat[0], dest[0]);
}
/*!
* @brief make given matrix identity. It is identical with below,
* but it is more easy to do that with this func especially for members
* e.g. glm_mat2_identity(aStruct->aMatrix);
*
* @code
* glm_mat2_copy(GLM_MAT2_IDENTITY, mat); // C only
*
* // or
* mat2 mat = GLM_MAT2_IDENTITY_INIT;
* @endcode
*
* @param[in, out] mat destination
*/
CGLM_INLINE
void
glm_mat2_identity(mat2 mat) {
CGLM_ALIGN_MAT mat2 t = GLM_MAT2_IDENTITY_INIT;
glm_mat2_copy(t, mat);
}
/*!
* @brief make given matrix array's each element identity matrix
*
* @param[in, out] mat matrix array (must be aligned (16)
* if alignment is not disabled)
*
* @param[in] count count of matrices
*/
CGLM_INLINE
void
glm_mat2_identity_array(mat2 * __restrict mat, size_t count) {
CGLM_ALIGN_MAT mat2 t = GLM_MAT2_IDENTITY_INIT;
size_t i;
for (i = 0; i < count; i++) {
glm_mat2_copy(t, mat[i]);
}
}
/*!
* @brief make given matrix zero.
*
* @param[in, out] mat matrix
*/
CGLM_INLINE
void
glm_mat2_zero(mat2 mat) {
CGLM_ALIGN_MAT mat2 t = GLM_MAT2_ZERO_INIT;
glm_mat2_copy(t, mat);
}
/*!
* @brief multiply m1 and m2 to dest
*
* m1, m2 and dest matrices can be same matrix, it is possible to write this:
*
* @code
* mat2 m = GLM_MAT2_IDENTITY_INIT;
* glm_mat2_mul(m, m, m);
* @endcode
*
* @param[in] m1 left matrix
* @param[in] m2 right matrix
* @param[out] dest destination matrix
*/
CGLM_INLINE
void
glm_mat2_mul(mat2 m1, mat2 m2, mat2 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat2_mul_sse2(m1, m2, dest);
#elif defined(CGLM_NEON_FP)
glm_mat2_mul_neon(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1],
a10 = m1[1][0], a11 = m1[1][1],
b00 = m2[0][0], b01 = m2[0][1],
b10 = m2[1][0], b11 = m2[1][1];
dest[0][0] = a00 * b00 + a10 * b01;
dest[0][1] = a01 * b00 + a11 * b01;
dest[1][0] = a00 * b10 + a10 * b11;
dest[1][1] = a01 * b10 + a11 * b11;
#endif
}
/*!
* @brief transpose mat2 and store in dest
*
* source matrix will not be transposed unless dest is m
*
* @param[in] m matrix
* @param[out] dest result
*/
CGLM_INLINE
void
glm_mat2_transpose_to(mat2 m, mat2 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat2_transp_sse2(m, dest);
#else
dest[0][0] = m[0][0];
dest[0][1] = m[1][0];
dest[1][0] = m[0][1];
dest[1][1] = m[1][1];
#endif
}
/*!
* @brief tranpose mat2 and store result in same matrix
*
* @param[in, out] m source and dest
*/
CGLM_INLINE
void
glm_mat2_transpose(mat2 m) {
float tmp;
tmp = m[0][1];
m[0][1] = m[1][0];
m[1][0] = tmp;
}
/*!
* @brief multiply mat2 with vec2 (column vector) and store in dest vector
*
* @param[in] m mat2 (left)
* @param[in] v vec2 (right, column vector)
* @param[out] dest vec2 (result, column vector)
*/
CGLM_INLINE
void
glm_mat2_mulv(mat2 m, vec2 v, vec2 dest) {
dest[0] = m[0][0] * v[0] + m[1][0] * v[1];
dest[1] = m[0][1] * v[0] + m[1][1] * v[1];
}
/*!
* @brief trace of matrix
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
CGLM_INLINE
float
glm_mat2_trace(mat2 m) {
return m[0][0] + m[1][1];
}
/*!
* @brief scale (multiply with scalar) matrix
*
* multiply matrix with scalar
*
* @param[in, out] m matrix
* @param[in] s scalar
*/
CGLM_INLINE
void
glm_mat2_scale(mat2 m, float s) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(m[0], _mm_mul_ps(_mm_loadu_ps(m[0]), _mm_set1_ps(s)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(m[0], vmulq_f32(vld1q_f32(m[0]), vdupq_n_f32(s)));
#else
m[0][0] = m[0][0] * s;
m[0][1] = m[0][1] * s;
m[1][0] = m[1][0] * s;
m[1][1] = m[1][1] * s;
#endif
}
/*!
* @brief mat2 determinant
*
* @param[in] mat matrix
*
* @return determinant
*/
CGLM_INLINE
float
glm_mat2_det(mat2 mat) {
return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
}
/*!
* @brief inverse mat2 and store in dest
*
* @param[in] mat matrix
* @param[out] dest inverse matrix
*/
CGLM_INLINE
void
glm_mat2_inv(mat2 mat, mat2 dest) {
float det;
float a = mat[0][0], b = mat[0][1],
c = mat[1][0], d = mat[1][1];
det = 1.0f / (a * d - b * c);
dest[0][0] = d * det;
dest[0][1] = -b * det;
dest[1][0] = -c * det;
dest[1][1] = a * det;
}
/*!
* @brief swap two matrix columns
*
* @param[in,out] mat matrix
* @param[in] col1 col1
* @param[in] col2 col2
*/
CGLM_INLINE
void
glm_mat2_swap_col(mat2 mat, int col1, int col2) {
float a, b;
a = mat[col1][0];
b = mat[col1][1];
mat[col1][0] = mat[col2][0];
mat[col1][1] = mat[col2][1];
mat[col2][0] = a;
mat[col2][1] = b;
}
/*!
* @brief swap two matrix rows
*
* @param[in,out] mat matrix
* @param[in] row1 row1
* @param[in] row2 row2
*/
CGLM_INLINE
void
glm_mat2_swap_row(mat2 mat, int row1, int row2) {
float a, b;
a = mat[0][row1];
b = mat[1][row1];
mat[0][row1] = mat[0][row2];
mat[1][row1] = mat[1][row2];
mat[0][row2] = a;
mat[1][row2] = b;
}
/*!
* @brief helper for R (row vector) * M (matrix) * C (column vector)
*
* rmc stands for Row * Matrix * Column
*
* the result is scalar because R * M = Matrix1x2 (row vector),
* then Matrix1x2 * Vec2 (column vector) = Matrix1x1 (Scalar)
*
* @param[in] r row vector or matrix1x2
* @param[in] m matrix2x2
* @param[in] c column vector or matrix2x1
*
* @return scalar value e.g. Matrix1x1
*/
CGLM_INLINE
float
glm_mat2_rmc(vec2 r, mat2 m, vec2 c) {
vec2 tmp;
glm_mat2_mulv(m, c, tmp);
return glm_vec2_dot(r, tmp);
}
#endif /* cglm_mat2_h */

424
include/cglm/mat3.h Normal file
View File

@ -0,0 +1,424 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Macros:
GLM_MAT3_IDENTITY_INIT
GLM_MAT3_ZERO_INIT
GLM_MAT3_IDENTITY
GLM_MAT3_ZERO
glm_mat3_dup(mat, dest)
Functions:
CGLM_INLINE void glm_mat3_copy(mat3 mat, mat3 dest);
CGLM_INLINE void glm_mat3_identity(mat3 mat);
CGLM_INLINE void glm_mat3_identity_array(mat3 * restrict mat, size_t count);
CGLM_INLINE void glm_mat3_zero(mat3 mat);
CGLM_INLINE void glm_mat3_mul(mat3 m1, mat3 m2, mat3 dest);
CGLM_INLINE void glm_mat3_transpose_to(mat3 m, mat3 dest);
CGLM_INLINE void glm_mat3_transpose(mat3 m);
CGLM_INLINE void glm_mat3_mulv(mat3 m, vec3 v, vec3 dest);
CGLM_INLINE float glm_mat3_trace(mat3 m);
CGLM_INLINE void glm_mat3_quat(mat3 m, versor dest);
CGLM_INLINE void glm_mat3_scale(mat3 m, float s);
CGLM_INLINE float glm_mat3_det(mat3 mat);
CGLM_INLINE void glm_mat3_inv(mat3 mat, mat3 dest);
CGLM_INLINE void glm_mat3_swap_col(mat3 mat, int col1, int col2);
CGLM_INLINE void glm_mat3_swap_row(mat3 mat, int row1, int row2);
CGLM_INLINE float glm_mat3_rmc(vec3 r, mat3 m, vec3 c);
*/
#ifndef cglm_mat3_h
#define cglm_mat3_h
#include "common.h"
#include "vec3.h"
#ifdef CGLM_SSE_FP
# include "simd/sse2/mat3.h"
#endif
#define GLM_MAT3_IDENTITY_INIT {{1.0f, 0.0f, 0.0f}, \
{0.0f, 1.0f, 0.0f}, \
{0.0f, 0.0f, 1.0f}}
#define GLM_MAT3_ZERO_INIT {{0.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f}}
/* for C only */
#define GLM_MAT3_IDENTITY ((mat3)GLM_MAT3_IDENTITY_INIT)
#define GLM_MAT3_ZERO ((mat3)GLM_MAT3_ZERO_INIT)
/* DEPRECATED! use _copy, _ucopy versions */
#define glm_mat3_dup(mat, dest) glm_mat3_copy(mat, dest)
/*!
* @brief copy all members of [mat] to [dest]
*
* @param[in] mat source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_mat3_copy(mat3 mat, mat3 dest) {
dest[0][0] = mat[0][0];
dest[0][1] = mat[0][1];
dest[0][2] = mat[0][2];
dest[1][0] = mat[1][0];
dest[1][1] = mat[1][1];
dest[1][2] = mat[1][2];
dest[2][0] = mat[2][0];
dest[2][1] = mat[2][1];
dest[2][2] = mat[2][2];
}
/*!
* @brief make given matrix identity. It is identical with below,
* but it is more easy to do that with this func especially for members
* e.g. glm_mat3_identity(aStruct->aMatrix);
*
* @code
* glm_mat3_copy(GLM_MAT3_IDENTITY, mat); // C only
*
* // or
* mat3 mat = GLM_MAT3_IDENTITY_INIT;
* @endcode
*
* @param[in, out] mat destination
*/
CGLM_INLINE
void
glm_mat3_identity(mat3 mat) {
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_IDENTITY_INIT;
glm_mat3_copy(t, mat);
}
/*!
* @brief make given matrix array's each element identity matrix
*
* @param[in, out] mat matrix array (must be aligned (16/32)
* if alignment is not disabled)
*
* @param[in] count count of matrices
*/
CGLM_INLINE
void
glm_mat3_identity_array(mat3 * __restrict mat, size_t count) {
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_IDENTITY_INIT;
size_t i;
for (i = 0; i < count; i++) {
glm_mat3_copy(t, mat[i]);
}
}
/*!
* @brief make given matrix zero.
*
* @param[in, out] mat matrix
*/
CGLM_INLINE
void
glm_mat3_zero(mat3 mat) {
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_ZERO_INIT;
glm_mat3_copy(t, mat);
}
/*!
* @brief multiply m1 and m2 to dest
*
* m1, m2 and dest matrices can be same matrix, it is possible to write this:
*
* @code
* mat3 m = GLM_MAT3_IDENTITY_INIT;
* glm_mat3_mul(m, m, m);
* @endcode
*
* @param[in] m1 left matrix
* @param[in] m2 right matrix
* @param[out] dest destination matrix
*/
CGLM_INLINE
void
glm_mat3_mul(mat3 m1, mat3 m2, mat3 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat3_mul_sse2(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2],
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2],
a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2],
b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2],
b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2],
b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2];
dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
#endif
}
/*!
* @brief transpose mat3 and store in dest
*
* source matrix will not be transposed unless dest is m
*
* @param[in] m matrix
* @param[out] dest result
*/
CGLM_INLINE
void
glm_mat3_transpose_to(mat3 m, mat3 dest) {
dest[0][0] = m[0][0];
dest[0][1] = m[1][0];
dest[0][2] = m[2][0];
dest[1][0] = m[0][1];
dest[1][1] = m[1][1];
dest[1][2] = m[2][1];
dest[2][0] = m[0][2];
dest[2][1] = m[1][2];
dest[2][2] = m[2][2];
}
/*!
* @brief tranpose mat3 and store result in same matrix
*
* @param[in, out] m source and dest
*/
CGLM_INLINE
void
glm_mat3_transpose(mat3 m) {
CGLM_ALIGN_MAT mat3 tmp;
tmp[0][1] = m[1][0];
tmp[0][2] = m[2][0];
tmp[1][0] = m[0][1];
tmp[1][2] = m[2][1];
tmp[2][0] = m[0][2];
tmp[2][1] = m[1][2];
m[0][1] = tmp[0][1];
m[0][2] = tmp[0][2];
m[1][0] = tmp[1][0];
m[1][2] = tmp[1][2];
m[2][0] = tmp[2][0];
m[2][1] = tmp[2][1];
}
/*!
* @brief multiply mat3 with vec3 (column vector) and store in dest vector
*
* @param[in] m mat3 (left)
* @param[in] v vec3 (right, column vector)
* @param[out] dest vec3 (result, column vector)
*/
CGLM_INLINE
void
glm_mat3_mulv(mat3 m, vec3 v, vec3 dest) {
vec3 res;
res[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2];
res[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2];
res[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2];
glm_vec3_copy(res, dest);
}
/*!
* @brief trace of matrix
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
CGLM_INLINE
float
glm_mat3_trace(mat3 m) {
return m[0][0] + m[1][1] + m[2][2];
}
/*!
* @brief convert mat3 to quaternion
*
* @param[in] m rotation matrix
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_mat3_quat(mat3 m, versor dest) {
float trace, r, rinv;
/* it seems using like m12 instead of m[1][2] causes extra instructions */
trace = m[0][0] + m[1][1] + m[2][2];
if (trace >= 0.0f) {
r = sqrtf(1.0f + trace);
rinv = 0.5f / r;
dest[0] = rinv * (m[1][2] - m[2][1]);
dest[1] = rinv * (m[2][0] - m[0][2]);
dest[2] = rinv * (m[0][1] - m[1][0]);
dest[3] = r * 0.5f;
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
rinv = 0.5f / r;
dest[0] = r * 0.5f;
dest[1] = rinv * (m[0][1] + m[1][0]);
dest[2] = rinv * (m[0][2] + m[2][0]);
dest[3] = rinv * (m[1][2] - m[2][1]);
} else if (m[1][1] >= m[2][2]) {
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][1] + m[1][0]);
dest[1] = r * 0.5f;
dest[2] = rinv * (m[1][2] + m[2][1]);
dest[3] = rinv * (m[2][0] - m[0][2]);
} else {
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][2] + m[2][0]);
dest[1] = rinv * (m[1][2] + m[2][1]);
dest[2] = r * 0.5f;
dest[3] = rinv * (m[0][1] - m[1][0]);
}
}
/*!
* @brief scale (multiply with scalar) matrix
*
* multiply matrix with scalar
*
* @param[in, out] m matrix
* @param[in] s scalar
*/
CGLM_INLINE
void
glm_mat3_scale(mat3 m, float s) {
m[0][0] *= s; m[0][1] *= s; m[0][2] *= s;
m[1][0] *= s; m[1][1] *= s; m[1][2] *= s;
m[2][0] *= s; m[2][1] *= s; m[2][2] *= s;
}
/*!
* @brief mat3 determinant
*
* @param[in] mat matrix
*
* @return determinant
*/
CGLM_INLINE
float
glm_mat3_det(mat3 mat) {
float a = mat[0][0], b = mat[0][1], c = mat[0][2],
d = mat[1][0], e = mat[1][1], f = mat[1][2],
g = mat[2][0], h = mat[2][1], i = mat[2][2];
return a * (e * i - h * f) - d * (b * i - c * h) + g * (b * f - c * e);
}
/*!
* @brief inverse mat3 and store in dest
*
* @param[in] mat matrix
* @param[out] dest inverse matrix
*/
CGLM_INLINE
void
glm_mat3_inv(mat3 mat, mat3 dest) {
float det;
float a = mat[0][0], b = mat[0][1], c = mat[0][2],
d = mat[1][0], e = mat[1][1], f = mat[1][2],
g = mat[2][0], h = mat[2][1], i = mat[2][2];
dest[0][0] = e * i - f * h;
dest[0][1] = -(b * i - h * c);
dest[0][2] = b * f - e * c;
dest[1][0] = -(d * i - g * f);
dest[1][1] = a * i - c * g;
dest[1][2] = -(a * f - d * c);
dest[2][0] = d * h - g * e;
dest[2][1] = -(a * h - g * b);
dest[2][2] = a * e - b * d;
det = 1.0f / (a * dest[0][0] + b * dest[1][0] + c * dest[2][0]);
glm_mat3_scale(dest, det);
}
/*!
* @brief swap two matrix columns
*
* @param[in,out] mat matrix
* @param[in] col1 col1
* @param[in] col2 col2
*/
CGLM_INLINE
void
glm_mat3_swap_col(mat3 mat, int col1, int col2) {
vec3 tmp;
glm_vec3_copy(mat[col1], tmp);
glm_vec3_copy(mat[col2], mat[col1]);
glm_vec3_copy(tmp, mat[col2]);
}
/*!
* @brief swap two matrix rows
*
* @param[in,out] mat matrix
* @param[in] row1 row1
* @param[in] row2 row2
*/
CGLM_INLINE
void
glm_mat3_swap_row(mat3 mat, int row1, int row2) {
vec3 tmp;
tmp[0] = mat[0][row1];
tmp[1] = mat[1][row1];
tmp[2] = mat[2][row1];
mat[0][row1] = mat[0][row2];
mat[1][row1] = mat[1][row2];
mat[2][row1] = mat[2][row2];
mat[0][row2] = tmp[0];
mat[1][row2] = tmp[1];
mat[2][row2] = tmp[2];
}
/*!
* @brief helper for R (row vector) * M (matrix) * C (column vector)
*
* rmc stands for Row * Matrix * Column
*
* the result is scalar because R * M = Matrix1x3 (row vector),
* then Matrix1x3 * Vec3 (column vector) = Matrix1x1 (Scalar)
*
* @param[in] r row vector or matrix1x3
* @param[in] m matrix3x3
* @param[in] c column vector or matrix3x1
*
* @return scalar value e.g. Matrix1x1
*/
CGLM_INLINE
float
glm_mat3_rmc(vec3 r, mat3 m, vec3 c) {
vec3 tmp;
glm_mat3_mulv(m, c, tmp);
return glm_vec3_dot(r, tmp);
}
#endif /* cglm_mat3_h */

754
include/cglm/mat4.h Normal file
View File

@ -0,0 +1,754 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*!
* Most of functions in this header are optimized manually with SIMD
* if available. You dont need to call/incude SIMD headers manually
*/
/*
Macros:
GLM_MAT4_IDENTITY_INIT
GLM_MAT4_ZERO_INIT
GLM_MAT4_IDENTITY
GLM_MAT4_ZERO
Functions:
CGLM_INLINE void glm_mat4_ucopy(mat4 mat, mat4 dest);
CGLM_INLINE void glm_mat4_copy(mat4 mat, mat4 dest);
CGLM_INLINE void glm_mat4_identity(mat4 mat);
CGLM_INLINE void glm_mat4_identity_array(mat4 * restrict mat, size_t count);
CGLM_INLINE void glm_mat4_zero(mat4 mat);
CGLM_INLINE void glm_mat4_pick3(mat4 mat, mat3 dest);
CGLM_INLINE void glm_mat4_pick3t(mat4 mat, mat3 dest);
CGLM_INLINE void glm_mat4_ins3(mat3 mat, mat4 dest);
CGLM_INLINE void glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest);
CGLM_INLINE void glm_mat4_mulN(mat4 *matrices[], int len, mat4 dest);
CGLM_INLINE void glm_mat4_mulv(mat4 m, vec4 v, vec4 dest);
CGLM_INLINE void glm_mat4_mulv3(mat4 m, vec3 v, vec3 dest);
CGLM_INLINE float glm_mat4_trace(mat4 m);
CGLM_INLINE float glm_mat4_trace3(mat4 m);
CGLM_INLINE void glm_mat4_quat(mat4 m, versor dest) ;
CGLM_INLINE void glm_mat4_transpose_to(mat4 m, mat4 dest);
CGLM_INLINE void glm_mat4_transpose(mat4 m);
CGLM_INLINE void glm_mat4_scale_p(mat4 m, float s);
CGLM_INLINE void glm_mat4_scale(mat4 m, float s);
CGLM_INLINE float glm_mat4_det(mat4 mat);
CGLM_INLINE void glm_mat4_inv(mat4 mat, mat4 dest);
CGLM_INLINE void glm_mat4_inv_fast(mat4 mat, mat4 dest);
CGLM_INLINE void glm_mat4_swap_col(mat4 mat, int col1, int col2);
CGLM_INLINE void glm_mat4_swap_row(mat4 mat, int row1, int row2);
CGLM_INLINE float glm_mat4_rmc(vec4 r, mat4 m, vec4 c);
*/
#ifndef cglm_mat_h
#define cglm_mat_h
#include "common.h"
#include "vec4.h"
#include "vec3.h"
#ifdef CGLM_SSE_FP
# include "simd/sse2/mat4.h"
#endif
#ifdef CGLM_AVX_FP
# include "simd/avx/mat4.h"
#endif
#ifdef CGLM_NEON_FP
# include "simd/neon/mat4.h"
#endif
#ifdef DEBUG
# include <assert.h>
#endif
#define GLM_MAT4_IDENTITY_INIT {{1.0f, 0.0f, 0.0f, 0.0f}, \
{0.0f, 1.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 1.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f, 1.0f}}
#define GLM_MAT4_ZERO_INIT {{0.0f, 0.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f, 0.0f}}
/* for C only */
#define GLM_MAT4_IDENTITY ((mat4)GLM_MAT4_IDENTITY_INIT)
#define GLM_MAT4_ZERO ((mat4)GLM_MAT4_ZERO_INIT)
/* DEPRECATED! use _copy, _ucopy versions */
#define glm_mat4_udup(mat, dest) glm_mat4_ucopy(mat, dest)
#define glm_mat4_dup(mat, dest) glm_mat4_copy(mat, dest)
/* DEPRECATED! default is precise now. */
#define glm_mat4_inv_precise(mat, dest) glm_mat4_inv(mat, dest)
/*!
* @brief copy all members of [mat] to [dest]
*
* matrix may not be aligned, u stands for unaligned, this may be useful when
* copying a matrix from external source e.g. asset importer...
*
* @param[in] mat source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_mat4_ucopy(mat4 mat, mat4 dest) {
dest[0][0] = mat[0][0]; dest[1][0] = mat[1][0];
dest[0][1] = mat[0][1]; dest[1][1] = mat[1][1];
dest[0][2] = mat[0][2]; dest[1][2] = mat[1][2];
dest[0][3] = mat[0][3]; dest[1][3] = mat[1][3];
dest[2][0] = mat[2][0]; dest[3][0] = mat[3][0];
dest[2][1] = mat[2][1]; dest[3][1] = mat[3][1];
dest[2][2] = mat[2][2]; dest[3][2] = mat[3][2];
dest[2][3] = mat[2][3]; dest[3][3] = mat[3][3];
}
/*!
* @brief copy all members of [mat] to [dest]
*
* @param[in] mat source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_mat4_copy(mat4 mat, mat4 dest) {
#ifdef __AVX__
glmm_store256(dest[0], glmm_load256(mat[0]));
glmm_store256(dest[2], glmm_load256(mat[2]));
#elif defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest[0], glmm_load(mat[0]));
glmm_store(dest[1], glmm_load(mat[1]));
glmm_store(dest[2], glmm_load(mat[2]));
glmm_store(dest[3], glmm_load(mat[3]));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest[0], vld1q_f32(mat[0]));
vst1q_f32(dest[1], vld1q_f32(mat[1]));
vst1q_f32(dest[2], vld1q_f32(mat[2]));
vst1q_f32(dest[3], vld1q_f32(mat[3]));
#else
glm_mat4_ucopy(mat, dest);
#endif
}
/*!
* @brief make given matrix identity. It is identical with below,
* but it is more easy to do that with this func especially for members
* e.g. glm_mat4_identity(aStruct->aMatrix);
*
* @code
* glm_mat4_copy(GLM_MAT4_IDENTITY, mat); // C only
*
* // or
* mat4 mat = GLM_MAT4_IDENTITY_INIT;
* @endcode
*
* @param[in, out] mat destination
*/
CGLM_INLINE
void
glm_mat4_identity(mat4 mat) {
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
glm_mat4_copy(t, mat);
}
/*!
* @brief make given matrix array's each element identity matrix
*
* @param[in, out] mat matrix array (must be aligned (16/32)
* if alignment is not disabled)
*
* @param[in] count count of matrices
*/
CGLM_INLINE
void
glm_mat4_identity_array(mat4 * __restrict mat, size_t count) {
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
size_t i;
for (i = 0; i < count; i++) {
glm_mat4_copy(t, mat[i]);
}
}
/*!
* @brief make given matrix zero.
*
* @param[in, out] mat matrix
*/
CGLM_INLINE
void
glm_mat4_zero(mat4 mat) {
#ifdef __AVX__
__m256 y0;
y0 = _mm256_setzero_ps();
glmm_store256(mat[0], y0);
glmm_store256(mat[2], y0);
#elif defined( __SSE__ ) || defined( __SSE2__ )
glmm_128 x0;
x0 = _mm_setzero_ps();
glmm_store(mat[0], x0);
glmm_store(mat[1], x0);
glmm_store(mat[2], x0);
glmm_store(mat[3], x0);
#elif defined(CGLM_NEON_FP)
glmm_128 x0;
x0 = vdupq_n_f32(0.0f);
vst1q_f32(mat[0], x0);
vst1q_f32(mat[1], x0);
vst1q_f32(mat[2], x0);
vst1q_f32(mat[3], x0);
#else
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_ZERO_INIT;
glm_mat4_copy(t, mat);
#endif
}
/*!
* @brief copy upper-left of mat4 to mat3
*
* @param[in] mat source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_mat4_pick3(mat4 mat, mat3 dest) {
dest[0][0] = mat[0][0];
dest[0][1] = mat[0][1];
dest[0][2] = mat[0][2];
dest[1][0] = mat[1][0];
dest[1][1] = mat[1][1];
dest[1][2] = mat[1][2];
dest[2][0] = mat[2][0];
dest[2][1] = mat[2][1];
dest[2][2] = mat[2][2];
}
/*!
* @brief copy upper-left of mat4 to mat3 (transposed)
*
* the postfix t stands for transpose
*
* @param[in] mat source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_mat4_pick3t(mat4 mat, mat3 dest) {
dest[0][0] = mat[0][0];
dest[0][1] = mat[1][0];
dest[0][2] = mat[2][0];
dest[1][0] = mat[0][1];
dest[1][1] = mat[1][1];
dest[1][2] = mat[2][1];
dest[2][0] = mat[0][2];
dest[2][1] = mat[1][2];
dest[2][2] = mat[2][2];
}
/*!
* @brief copy mat3 to mat4's upper-left
*
* @param[in] mat source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_mat4_ins3(mat3 mat, mat4 dest) {
dest[0][0] = mat[0][0];
dest[0][1] = mat[0][1];
dest[0][2] = mat[0][2];
dest[1][0] = mat[1][0];
dest[1][1] = mat[1][1];
dest[1][2] = mat[1][2];
dest[2][0] = mat[2][0];
dest[2][1] = mat[2][1];
dest[2][2] = mat[2][2];
}
/*!
* @brief multiply m1 and m2 to dest
*
* m1, m2 and dest matrices can be same matrix, it is possible to write this:
*
* @code
* mat4 m = GLM_MAT4_IDENTITY_INIT;
* glm_mat4_mul(m, m, m);
* @endcode
*
* @param[in] m1 left matrix
* @param[in] m2 right matrix
* @param[out] dest destination matrix
*/
CGLM_INLINE
void
glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest) {
#ifdef __AVX__
glm_mat4_mul_avx(m1, m2, dest);
#elif defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_mul_sse2(m1, m2, dest);
#elif defined(CGLM_NEON_FP)
glm_mat4_mul_neon(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], a23 = m1[2][3],
a30 = m1[3][0], a31 = m1[3][1], a32 = m1[3][2], a33 = m1[3][3],
b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2], b03 = m2[0][3],
b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2], b13 = m2[1][3],
b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2], b23 = m2[2][3],
b30 = m2[3][0], b31 = m2[3][1], b32 = m2[3][2], b33 = m2[3][3];
dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02 + a30 * b03;
dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02 + a31 * b03;
dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02 + a32 * b03;
dest[0][3] = a03 * b00 + a13 * b01 + a23 * b02 + a33 * b03;
dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12 + a30 * b13;
dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12 + a31 * b13;
dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12 + a32 * b13;
dest[1][3] = a03 * b10 + a13 * b11 + a23 * b12 + a33 * b13;
dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22 + a30 * b23;
dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22 + a31 * b23;
dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22 + a32 * b23;
dest[2][3] = a03 * b20 + a13 * b21 + a23 * b22 + a33 * b23;
dest[3][0] = a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33;
dest[3][1] = a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33;
dest[3][2] = a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33;
dest[3][3] = a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33;
#endif
}
/*!
* @brief mupliply N mat4 matrices and store result in dest
*
* this function lets you multiply multiple (more than two or more...) matrices
* <br><br>multiplication will be done in loop, this may reduce instructions
* size but if <b>len</b> is too small then compiler may unroll whole loop,
* usage:
* @code
* mat m1, m2, m3, m4, res;
*
* glm_mat4_mulN((mat4 *[]){&m1, &m2, &m3, &m4}, 4, res);
* @endcode
*
* @warning matrices parameter is pointer array not mat4 array!
*
* @param[in] matrices mat4 * array
* @param[in] len matrices count
* @param[out] dest result
*/
CGLM_INLINE
void
glm_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest) {
uint32_t i;
#ifdef DEBUG
assert(len > 1 && "there must be least 2 matrices to go!");
#endif
glm_mat4_mul(*matrices[0], *matrices[1], dest);
for (i = 2; i < len; i++)
glm_mat4_mul(dest, *matrices[i], dest);
}
/*!
* @brief multiply mat4 with vec4 (column vector) and store in dest vector
*
* @param[in] m mat4 (left)
* @param[in] v vec4 (right, column vector)
* @param[out] dest vec4 (result, column vector)
*/
CGLM_INLINE
void
glm_mat4_mulv(mat4 m, vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_mulv_sse2(m, v, dest);
#elif defined(CGLM_NEON_FP)
glm_mat4_mulv_neon(m, v, dest);
#else
vec4 res;
res[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2] + m[3][0] * v[3];
res[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2] + m[3][1] * v[3];
res[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2] + m[3][2] * v[3];
res[3] = m[0][3] * v[0] + m[1][3] * v[1] + m[2][3] * v[2] + m[3][3] * v[3];
glm_vec4_copy(res, dest);
#endif
}
/*!
* @brief trace of matrix
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
CGLM_INLINE
float
glm_mat4_trace(mat4 m) {
return m[0][0] + m[1][1] + m[2][2] + m[3][3];
}
/*!
* @brief trace of matrix (rotation part)
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
CGLM_INLINE
float
glm_mat4_trace3(mat4 m) {
return m[0][0] + m[1][1] + m[2][2];
}
/*!
* @brief convert mat4's rotation part to quaternion
*
* @param[in] m affine matrix
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_mat4_quat(mat4 m, versor dest) {
float trace, r, rinv;
/* it seems using like m12 instead of m[1][2] causes extra instructions */
trace = m[0][0] + m[1][1] + m[2][2];
if (trace >= 0.0f) {
r = sqrtf(1.0f + trace);
rinv = 0.5f / r;
dest[0] = rinv * (m[1][2] - m[2][1]);
dest[1] = rinv * (m[2][0] - m[0][2]);
dest[2] = rinv * (m[0][1] - m[1][0]);
dest[3] = r * 0.5f;
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
rinv = 0.5f / r;
dest[0] = r * 0.5f;
dest[1] = rinv * (m[0][1] + m[1][0]);
dest[2] = rinv * (m[0][2] + m[2][0]);
dest[3] = rinv * (m[1][2] - m[2][1]);
} else if (m[1][1] >= m[2][2]) {
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][1] + m[1][0]);
dest[1] = r * 0.5f;
dest[2] = rinv * (m[1][2] + m[2][1]);
dest[3] = rinv * (m[2][0] - m[0][2]);
} else {
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][2] + m[2][0]);
dest[1] = rinv * (m[1][2] + m[2][1]);
dest[2] = r * 0.5f;
dest[3] = rinv * (m[0][1] - m[1][0]);
}
}
/*!
* @brief multiply vector with mat4
*
* actually the result is vec4, after multiplication the last component
* is trimmed. if you need it don't use this func.
*
* @param[in] m mat4(affine transform)
* @param[in] v vec3
* @param[in] last 4th item to make it vec4
* @param[out] dest result vector (vec3)
*/
CGLM_INLINE
void
glm_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest) {
vec4 res;
glm_vec4(v, last, res);
glm_mat4_mulv(m, res, res);
glm_vec3(res, dest);
}
/*!
* @brief transpose mat4 and store in dest
*
* source matrix will not be transposed unless dest is m
*
* @param[in] m matrix
* @param[out] dest result
*/
CGLM_INLINE
void
glm_mat4_transpose_to(mat4 m, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_transp_sse2(m, dest);
#elif defined(CGLM_NEON_FP)
glm_mat4_transp_neon(m, dest);
#else
dest[0][0] = m[0][0]; dest[1][0] = m[0][1];
dest[0][1] = m[1][0]; dest[1][1] = m[1][1];
dest[0][2] = m[2][0]; dest[1][2] = m[2][1];
dest[0][3] = m[3][0]; dest[1][3] = m[3][1];
dest[2][0] = m[0][2]; dest[3][0] = m[0][3];
dest[2][1] = m[1][2]; dest[3][1] = m[1][3];
dest[2][2] = m[2][2]; dest[3][2] = m[2][3];
dest[2][3] = m[3][2]; dest[3][3] = m[3][3];
#endif
}
/*!
* @brief tranpose mat4 and store result in same matrix
*
* @param[in, out] m source and dest
*/
CGLM_INLINE
void
glm_mat4_transpose(mat4 m) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_transp_sse2(m, m);
#elif defined(CGLM_NEON_FP)
glm_mat4_transp_neon(m, m);
#else
mat4 d;
glm_mat4_transpose_to(m, d);
glm_mat4_ucopy(d, m);
#endif
}
/*!
* @brief scale (multiply with scalar) matrix without simd optimization
*
* multiply matrix with scalar
*
* @param[in, out] m matrix
* @param[in] s scalar
*/
CGLM_INLINE
void
glm_mat4_scale_p(mat4 m, float s) {
m[0][0] *= s; m[0][1] *= s; m[0][2] *= s; m[0][3] *= s;
m[1][0] *= s; m[1][1] *= s; m[1][2] *= s; m[1][3] *= s;
m[2][0] *= s; m[2][1] *= s; m[2][2] *= s; m[2][3] *= s;
m[3][0] *= s; m[3][1] *= s; m[3][2] *= s; m[3][3] *= s;
}
/*!
* @brief scale (multiply with scalar) matrix
*
* multiply matrix with scalar
*
* @param[in, out] m matrix
* @param[in] s scalar
*/
CGLM_INLINE
void
glm_mat4_scale(mat4 m, float s) {
#ifdef __AVX__
glm_mat4_scale_avx(m, s);
#elif defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_scale_sse2(m, s);
#elif defined(CGLM_NEON_FP)
glm_mat4_scale_neon(m, s);
#else
glm_mat4_scale_p(m, s);
#endif
}
/*!
* @brief mat4 determinant
*
* @param[in] mat matrix
*
* @return determinant
*/
CGLM_INLINE
float
glm_mat4_det(mat4 mat) {
#if defined( __SSE__ ) || defined( __SSE2__ )
return glm_mat4_det_sse2(mat);
#elif defined(CGLM_NEON_FP)
return glm_mat4_det_neon(mat);
#else
/* [square] det(A) = det(At) */
float t[6];
float a = mat[0][0], b = mat[0][1], c = mat[0][2], d = mat[0][3],
e = mat[1][0], f = mat[1][1], g = mat[1][2], h = mat[1][3],
i = mat[2][0], j = mat[2][1], k = mat[2][2], l = mat[2][3],
m = mat[3][0], n = mat[3][1], o = mat[3][2], p = mat[3][3];
t[0] = k * p - o * l;
t[1] = j * p - n * l;
t[2] = j * o - n * k;
t[3] = i * p - m * l;
t[4] = i * o - m * k;
t[5] = i * n - m * j;
return a * (f * t[0] - g * t[1] + h * t[2])
- b * (e * t[0] - g * t[3] + h * t[4])
+ c * (e * t[1] - f * t[3] + h * t[5])
- d * (e * t[2] - f * t[4] + g * t[5]);
#endif
}
/*!
* @brief inverse mat4 and store in dest
*
* @param[in] mat matrix
* @param[out] dest inverse matrix
*/
CGLM_INLINE
void
glm_mat4_inv(mat4 mat, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_inv_sse2(mat, dest);
#elif defined(CGLM_NEON_FP)
glm_mat4_inv_neon(mat, dest);
#else
float t[6];
float det;
float a = mat[0][0], b = mat[0][1], c = mat[0][2], d = mat[0][3],
e = mat[1][0], f = mat[1][1], g = mat[1][2], h = mat[1][3],
i = mat[2][0], j = mat[2][1], k = mat[2][2], l = mat[2][3],
m = mat[3][0], n = mat[3][1], o = mat[3][2], p = mat[3][3];
t[0] = k * p - o * l; t[1] = j * p - n * l; t[2] = j * o - n * k;
t[3] = i * p - m * l; t[4] = i * o - m * k; t[5] = i * n - m * j;
dest[0][0] = f * t[0] - g * t[1] + h * t[2];
dest[1][0] =-(e * t[0] - g * t[3] + h * t[4]);
dest[2][0] = e * t[1] - f * t[3] + h * t[5];
dest[3][0] =-(e * t[2] - f * t[4] + g * t[5]);
dest[0][1] =-(b * t[0] - c * t[1] + d * t[2]);
dest[1][1] = a * t[0] - c * t[3] + d * t[4];
dest[2][1] =-(a * t[1] - b * t[3] + d * t[5]);
dest[3][1] = a * t[2] - b * t[4] + c * t[5];
t[0] = g * p - o * h; t[1] = f * p - n * h; t[2] = f * o - n * g;
t[3] = e * p - m * h; t[4] = e * o - m * g; t[5] = e * n - m * f;
dest[0][2] = b * t[0] - c * t[1] + d * t[2];
dest[1][2] =-(a * t[0] - c * t[3] + d * t[4]);
dest[2][2] = a * t[1] - b * t[3] + d * t[5];
dest[3][2] =-(a * t[2] - b * t[4] + c * t[5]);
t[0] = g * l - k * h; t[1] = f * l - j * h; t[2] = f * k - j * g;
t[3] = e * l - i * h; t[4] = e * k - i * g; t[5] = e * j - i * f;
dest[0][3] =-(b * t[0] - c * t[1] + d * t[2]);
dest[1][3] = a * t[0] - c * t[3] + d * t[4];
dest[2][3] =-(a * t[1] - b * t[3] + d * t[5]);
dest[3][3] = a * t[2] - b * t[4] + c * t[5];
det = 1.0f / (a * dest[0][0] + b * dest[1][0]
+ c * dest[2][0] + d * dest[3][0]);
glm_mat4_scale_p(dest, det);
#endif
}
/*!
* @brief inverse mat4 and store in dest
*
* this func uses reciprocal approximation without extra corrections
* e.g Newton-Raphson. this should work faster than normal,
* to get more precise use glm_mat4_inv version.
*
* NOTE: You will lose precision, glm_mat4_inv is more accurate
*
* @param[in] mat matrix
* @param[out] dest inverse matrix
*/
CGLM_INLINE
void
glm_mat4_inv_fast(mat4 mat, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_inv_fast_sse2(mat, dest);
#else
glm_mat4_inv(mat, dest);
#endif
}
/*!
* @brief swap two matrix columns
*
* @param[in,out] mat matrix
* @param[in] col1 col1
* @param[in] col2 col2
*/
CGLM_INLINE
void
glm_mat4_swap_col(mat4 mat, int col1, int col2) {
CGLM_ALIGN(16) vec4 tmp;
glm_vec4_copy(mat[col1], tmp);
glm_vec4_copy(mat[col2], mat[col1]);
glm_vec4_copy(tmp, mat[col2]);
}
/*!
* @brief swap two matrix rows
*
* @param[in,out] mat matrix
* @param[in] row1 row1
* @param[in] row2 row2
*/
CGLM_INLINE
void
glm_mat4_swap_row(mat4 mat, int row1, int row2) {
CGLM_ALIGN(16) vec4 tmp;
tmp[0] = mat[0][row1];
tmp[1] = mat[1][row1];
tmp[2] = mat[2][row1];
tmp[3] = mat[3][row1];
mat[0][row1] = mat[0][row2];
mat[1][row1] = mat[1][row2];
mat[2][row1] = mat[2][row2];
mat[3][row1] = mat[3][row2];
mat[0][row2] = tmp[0];
mat[1][row2] = tmp[1];
mat[2][row2] = tmp[2];
mat[3][row2] = tmp[3];
}
/*!
* @brief helper for R (row vector) * M (matrix) * C (column vector)
*
* rmc stands for Row * Matrix * Column
*
* the result is scalar because R * M = Matrix1x4 (row vector),
* then Matrix1x4 * Vec4 (column vector) = Matrix1x1 (Scalar)
*
* @param[in] r row vector or matrix1x4
* @param[in] m matrix4x4
* @param[in] c column vector or matrix4x1
*
* @return scalar value e.g. B(s)
*/
CGLM_INLINE
float
glm_mat4_rmc(vec4 r, mat4 m, vec4 c) {
vec4 tmp;
glm_mat4_mulv(m, c, tmp);
return glm_vec4_dot(r, tmp);
}
#endif /* cglm_mat_h */

44
include/cglm/plane.h Normal file
View File

@ -0,0 +1,44 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_plane_h
#define cglm_plane_h
#include "common.h"
#include "vec3.h"
#include "vec4.h"
/*
Plane equation: Ax + By + Cz + D = 0;
It stored in vec4 as [A, B, C, D]. (A, B, C) is normal and D is distance
*/
/*
Functions:
CGLM_INLINE void glm_plane_normalize(vec4 plane);
*/
/*!
* @brief normalizes a plane
*
* @param[in, out] plane plane to normalize
*/
CGLM_INLINE
void
glm_plane_normalize(vec4 plane) {
float norm;
if ((norm = glm_vec3_norm(plane)) == 0.0f) {
glm_vec4_zero(plane);
return;
}
glm_vec4_scale(plane, 1.0f / norm, plane);
}
#endif /* cglm_plane_h */

172
include/cglm/project.h Normal file
View File

@ -0,0 +1,172 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_project_h
#define cglm_project_h
#include "common.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
#ifndef CGLM_CLIPSPACE_INCLUDE_ALL
# if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_ZO_BIT
# include "clipspace/project_zo.h"
# elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_NO_BIT
# include "clipspace/project_no.h"
# endif
#else
# include "clipspace/project_zo.h"
# include "clipspace/project_no.h"
#endif
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* if you don't have ( and don't want to have ) an inverse matrix then use
* glm_unproject version. You may use existing inverse of matrix in somewhere
* else, this is why glm_unprojecti exists to save save inversion cost
*
* [1] space:
* 1- if m = invProj: View Space
* 2- if m = invViewProj: World Space
* 3- if m = invMVP: Object Space
*
* You probably want to map the coordinates into object space
* so use invMVP as m
*
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
* glm_mat4_inv(viewProj, invMVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] invMat matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest unprojected coordinates
*/
CGLM_INLINE
void
glm_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_ZO_BIT
glm_unprojecti_zo(pos, invMat, vp, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_NO_BIT
glm_unprojecti_no(pos, invMat, vp, dest);
#endif
}
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* this is same as glm_unprojecti except this function get inverse matrix for
* you.
*
* [1] space:
* 1- if m = proj: View Space
* 2- if m = viewProj: World Space
* 3- if m = MVP: Object Space
*
* You probably want to map the coordinates into object space
* so use MVP as m
*
* Computing viewProj and MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] m matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest unprojected coordinates
*/
CGLM_INLINE
void
glm_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
mat4 inv;
glm_mat4_inv(m, inv);
glm_unprojecti(pos, inv, vp, dest);
}
/*!
* @brief map object coordinates to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos object coordinates
* @param[in] m MVP matrix
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest projected coordinates
*/
CGLM_INLINE
void
glm_project(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_ZO_BIT
glm_project_zo(pos, m, vp, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_NO_BIT
glm_project_no(pos, m, vp, dest);
#endif
}
/*!
* @brief map object's z coordinate to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] v object coordinates
* @param[in] m MVP matrix
*
* @returns projected z coordinate
*/
CGLM_INLINE
float
glm_project_z(vec3 v, mat4 m) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_ZO_BIT
return glm_project_z_zo(v, m);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_NO_BIT
return glm_project_z_no(v, m);
#endif
}
/*!
* @brief define a picking region
*
* @param[in] center center [x, y] of a picking region in window coordinates
* @param[in] size size [width, height] of the picking region in window coordinates
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest projected coordinates
*/
CGLM_INLINE
void
glm_pickmatrix(vec2 center, vec2 size, vec4 vp, mat4 dest) {
mat4 res;
vec3 v;
if (size[0] <= 0.0f || size[1] <= 0.0f)
return;
/* Translate and scale the picked region to the entire window */
v[0] = (vp[2] - 2.0f * (center[0] - vp[0])) / size[0];
v[1] = (vp[3] - 2.0f * (center[1] - vp[1])) / size[1];
v[2] = 0.0f;
glm_translate_make(res, v);
v[0] = vp[2] / size[0];
v[1] = vp[3] / size[1];
v[2] = 1.0f;
glm_scale(res, v);
glm_mat4_copy(res, dest);
}
#endif /* cglm_project_h */

867
include/cglm/quat.h Normal file
View File

@ -0,0 +1,867 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Macros:
GLM_QUAT_IDENTITY_INIT
GLM_QUAT_IDENTITY
Functions:
CGLM_INLINE void glm_quat_identity(versor q);
CGLM_INLINE void glm_quat_init(versor q, float x, float y, float z, float w);
CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 axis);
CGLM_INLINE void glm_quat_copy(versor q, versor dest);
CGLM_INLINE void glm_quat_from_vecs(vec3 a, vec3 b, versor dest);
CGLM_INLINE float glm_quat_norm(versor q);
CGLM_INLINE void glm_quat_normalize(versor q);
CGLM_INLINE void glm_quat_normalize_to(versor q, versor dest);
CGLM_INLINE float glm_quat_dot(versor p, versor q);
CGLM_INLINE void glm_quat_conjugate(versor q, versor dest);
CGLM_INLINE void glm_quat_inv(versor q, versor dest);
CGLM_INLINE void glm_quat_add(versor p, versor q, versor dest);
CGLM_INLINE void glm_quat_sub(versor p, versor q, versor dest);
CGLM_INLINE float glm_quat_real(versor q);
CGLM_INLINE void glm_quat_imag(versor q, vec3 dest);
CGLM_INLINE void glm_quat_imagn(versor q, vec3 dest);
CGLM_INLINE float glm_quat_imaglen(versor q);
CGLM_INLINE float glm_quat_angle(versor q);
CGLM_INLINE void glm_quat_axis(versor q, vec3 dest);
CGLM_INLINE void glm_quat_mul(versor p, versor q, versor dest);
CGLM_INLINE void glm_quat_mat4(versor q, mat4 dest);
CGLM_INLINE void glm_quat_mat4t(versor q, mat4 dest);
CGLM_INLINE void glm_quat_mat3(versor q, mat3 dest);
CGLM_INLINE void glm_quat_mat3t(versor q, mat3 dest);
CGLM_INLINE void glm_quat_lerp(versor from, versor to, float t, versor dest);
CGLM_INLINE void glm_quat_lerpc(versor from, versor to, float t, versor dest);
CGLM_INLINE void glm_quat_slerp(versor q, versor r, float t, versor dest);
CGLM_INLINE void glm_quat_nlerp(versor q, versor r, float t, versor dest);
CGLM_INLINE void glm_quat_look(vec3 eye, versor ori, mat4 dest);
CGLM_INLINE void glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest);
CGLM_INLINE void glm_quat_forp(vec3 from,
vec3 to,
vec3 fwd,
vec3 up,
versor dest);
CGLM_INLINE void glm_quat_rotatev(versor q, vec3 v, vec3 dest);
CGLM_INLINE void glm_quat_rotate(mat4 m, versor q, mat4 dest);
*/
#ifndef cglm_quat_h
#define cglm_quat_h
#include "common.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
#include "mat3.h"
#include "affine-mat.h"
#include "affine.h"
#ifdef CGLM_SSE_FP
# include "simd/sse2/quat.h"
#endif
#ifdef CGLM_NEON_FP
# include "simd/neon/quat.h"
#endif
CGLM_INLINE void glm_quat_normalize(versor q);
/*
* IMPORTANT:
* ----------------------------------------------------------------------------
* cglm stores quat as [x, y, z, w] since v0.3.6
*
* it was [w, x, y, z] before v0.3.6 it has been changed to [x, y, z, w]
* with v0.3.6 version.
* ----------------------------------------------------------------------------
*/
#define GLM_QUAT_IDENTITY_INIT {0.0f, 0.0f, 0.0f, 1.0f}
#define GLM_QUAT_IDENTITY ((versor)GLM_QUAT_IDENTITY_INIT)
/*!
* @brief makes given quat to identity
*
* @param[in, out] q quaternion
*/
CGLM_INLINE
void
glm_quat_identity(versor q) {
CGLM_ALIGN(16) versor v = GLM_QUAT_IDENTITY_INIT;
glm_vec4_copy(v, q);
}
/*!
* @brief make given quaternion array's each element identity quaternion
*
* @param[in, out] q quat array (must be aligned (16)
* if alignment is not disabled)
*
* @param[in] count count of quaternions
*/
CGLM_INLINE
void
glm_quat_identity_array(versor * __restrict q, size_t count) {
CGLM_ALIGN(16) versor v = GLM_QUAT_IDENTITY_INIT;
size_t i;
for (i = 0; i < count; i++) {
glm_vec4_copy(v, q[i]);
}
}
/*!
* @brief inits quaterion with raw values
*
* @param[out] q quaternion
* @param[in] x x
* @param[in] y y
* @param[in] z z
* @param[in] w w (real part)
*/
CGLM_INLINE
void
glm_quat_init(versor q, float x, float y, float z, float w) {
q[0] = x;
q[1] = y;
q[2] = z;
q[3] = w;
}
/*!
* @brief creates NEW quaternion with axis vector
*
* @param[out] q quaternion
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_quatv(versor q, float angle, vec3 axis) {
CGLM_ALIGN(8) vec3 k;
float a, c, s;
a = angle * 0.5f;
c = cosf(a);
s = sinf(a);
glm_normalize_to(axis, k);
q[0] = s * k[0];
q[1] = s * k[1];
q[2] = s * k[2];
q[3] = c;
}
/*!
* @brief creates NEW quaternion with individual axis components
*
* @param[out] q quaternion
* @param[in] angle angle (radians)
* @param[in] x axis.x
* @param[in] y axis.y
* @param[in] z axis.z
*/
CGLM_INLINE
void
glm_quat(versor q, float angle, float x, float y, float z) {
CGLM_ALIGN(8) vec3 axis = {x, y, z};
glm_quatv(q, angle, axis);
}
/*!
* @brief copy quaternion to another one
*
* @param[in] q quaternion
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_quat_copy(versor q, versor dest) {
glm_vec4_copy(q, dest);
}
/*!
* @brief compute quaternion rotating vector A to vector B
*
* @param[in] a vec3 (must have unit length)
* @param[in] b vec3 (must have unit length)
* @param[out] dest quaternion (of unit length)
*/
CGLM_INLINE
void
glm_quat_from_vecs(vec3 a, vec3 b, versor dest) {
CGLM_ALIGN(8) vec3 axis;
float cos_theta;
float cos_half_theta;
cos_theta = glm_vec3_dot(a, b);
if (cos_theta >= 1.f - GLM_FLT_EPSILON) { /* a ∥ b */
glm_quat_identity(dest);
return;
}
if (cos_theta < -1.f + GLM_FLT_EPSILON) { /* angle(a, b) = π */
glm_vec3_ortho(a, axis);
cos_half_theta = 0.f; /* cos π/2 */
} else {
glm_vec3_cross(a, b, axis);
cos_half_theta = 1.0f + cos_theta; /* cos 0 + cos θ */
}
glm_quat_init(dest, axis[0], axis[1], axis[2], cos_half_theta);
glm_quat_normalize(dest);
}
/*!
* @brief returns norm (magnitude) of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
float
glm_quat_norm(versor q) {
return glm_vec4_norm(q);
}
/*!
* @brief normalize quaternion and store result in dest
*
* @param[in] q quaternion to normalze
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_quat_normalize_to(versor q, versor dest) {
#if defined( __SSE2__ ) || defined( __SSE2__ )
__m128 xdot, x0;
float dot;
x0 = glmm_load(q);
xdot = glmm_vdot(x0, x0);
dot = _mm_cvtss_f32(xdot);
if (dot <= 0.0f) {
glm_quat_identity(dest);
return;
}
glmm_store(dest, _mm_div_ps(x0, _mm_sqrt_ps(xdot)));
#else
float dot;
dot = glm_vec4_norm2(q);
if (dot <= 0.0f) {
glm_quat_identity(dest);
return;
}
glm_vec4_scale(q, 1.0f / sqrtf(dot), dest);
#endif
}
/*!
* @brief normalize quaternion
*
* @param[in, out] q quaternion
*/
CGLM_INLINE
void
glm_quat_normalize(versor q) {
glm_quat_normalize_to(q, q);
}
/*!
* @brief dot product of two quaternion
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
*/
CGLM_INLINE
float
glm_quat_dot(versor p, versor q) {
return glm_vec4_dot(p, q);
}
/*!
* @brief conjugate of quaternion
*
* @param[in] q quaternion
* @param[out] dest conjugate
*/
CGLM_INLINE
void
glm_quat_conjugate(versor q, versor dest) {
glm_vec4_negate_to(q, dest);
dest[3] = -dest[3];
}
/*!
* @brief inverse of non-zero quaternion
*
* @param[in] q quaternion
* @param[out] dest inverse quaternion
*/
CGLM_INLINE
void
glm_quat_inv(versor q, versor dest) {
CGLM_ALIGN(16) versor conj;
glm_quat_conjugate(q, conj);
glm_vec4_scale(conj, 1.0f / glm_vec4_norm2(q), dest);
}
/*!
* @brief add (componentwise) two quaternions and store result in dest
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_add(versor p, versor q, versor dest) {
glm_vec4_add(p, q, dest);
}
/*!
* @brief subtract (componentwise) two quaternions and store result in dest
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_sub(versor p, versor q, versor dest) {
glm_vec4_sub(p, q, dest);
}
/*!
* @brief returns real part of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
float
glm_quat_real(versor q) {
return q[3];
}
/*!
* @brief returns imaginary part of quaternion
*
* @param[in] q quaternion
* @param[out] dest imag
*/
CGLM_INLINE
void
glm_quat_imag(versor q, vec3 dest) {
dest[0] = q[0];
dest[1] = q[1];
dest[2] = q[2];
}
/*!
* @brief returns normalized imaginary part of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
void
glm_quat_imagn(versor q, vec3 dest) {
glm_normalize_to(q, dest);
}
/*!
* @brief returns length of imaginary part of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
float
glm_quat_imaglen(versor q) {
return glm_vec3_norm(q);
}
/*!
* @brief returns angle of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
float
glm_quat_angle(versor q) {
/*
sin(theta / 2) = length(x*x + y*y + z*z)
cos(theta / 2) = w
theta = 2 * atan(sin(theta / 2) / cos(theta / 2))
*/
return 2.0f * atan2f(glm_quat_imaglen(q), glm_quat_real(q));
}
/*!
* @brief axis of quaternion
*
* @param[in] q quaternion
* @param[out] dest axis of quaternion
*/
CGLM_INLINE
void
glm_quat_axis(versor q, vec3 dest) {
glm_quat_imagn(q, dest);
}
/*!
* @brief multiplies two quaternion and stores result in dest
* this is also called Hamilton Product
*
* According to WikiPedia:
* The product of two rotation quaternions [clarification needed] will be
* equivalent to the rotation q followed by the rotation p
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_mul(versor p, versor q, versor dest) {
/*
+ (a1 b2 + b1 a2 + c1 d2 d1 c2)i
+ (a1 c2 b1 d2 + c1 a2 + d1 b2)j
+ (a1 d2 + b1 c2 c1 b2 + d1 a2)k
a1 a2 b1 b2 c1 c2 d1 d2
*/
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_quat_mul_sse2(p, q, dest);
#elif defined(CGLM_NEON_FP)
glm_quat_mul_neon(p, q, dest);
#else
dest[0] = p[3] * q[0] + p[0] * q[3] + p[1] * q[2] - p[2] * q[1];
dest[1] = p[3] * q[1] - p[0] * q[2] + p[1] * q[3] + p[2] * q[0];
dest[2] = p[3] * q[2] + p[0] * q[1] - p[1] * q[0] + p[2] * q[3];
dest[3] = p[3] * q[3] - p[0] * q[0] - p[1] * q[1] - p[2] * q[2];
#endif
}
/*!
* @brief convert quaternion to mat4
*
* @param[in] q quaternion
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_quat_mat4(versor q, mat4 dest) {
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[0][1] = xy + wz;
dest[1][2] = yz + wx;
dest[2][0] = xz + wy;
dest[1][0] = xy - wz;
dest[2][1] = yz - wx;
dest[0][2] = xz - wy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief convert quaternion to mat4 (transposed)
*
* @param[in] q quaternion
* @param[out] dest result matrix as transposed
*/
CGLM_INLINE
void
glm_quat_mat4t(versor q, mat4 dest) {
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[1][0] = xy + wz;
dest[2][1] = yz + wx;
dest[0][2] = xz + wy;
dest[0][1] = xy - wz;
dest[1][2] = yz - wx;
dest[2][0] = xz - wy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief convert quaternion to mat3
*
* @param[in] q quaternion
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_quat_mat3(versor q, mat3 dest) {
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[0][1] = xy + wz;
dest[1][2] = yz + wx;
dest[2][0] = xz + wy;
dest[1][0] = xy - wz;
dest[2][1] = yz - wx;
dest[0][2] = xz - wy;
}
/*!
* @brief convert quaternion to mat3 (transposed)
*
* @param[in] q quaternion
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_quat_mat3t(versor q, mat3 dest) {
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[1][0] = xy + wz;
dest[2][1] = yz + wx;
dest[0][2] = xz + wy;
dest[0][1] = xy - wz;
dest[1][2] = yz - wx;
dest[2][0] = xz - wy;
}
/*!
* @brief interpolates between two quaternions
* using linear interpolation (LERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t interpolant (amount)
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_lerp(versor from, versor to, float t, versor dest) {
glm_vec4_lerp(from, to, t, dest);
}
/*!
* @brief interpolates between two quaternions
* using linear interpolation (LERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_lerpc(versor from, versor to, float t, versor dest) {
glm_vec4_lerpc(from, to, t, dest);
}
/*!
* @brief interpolates between two quaternions
* taking the shortest rotation path using
* normalized linear interpolation (NLERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t interpolant (amount)
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_nlerp(versor from, versor to, float t, versor dest) {
versor target;
float dot;
dot = glm_vec4_dot(from, to);
glm_vec4_scale(to, (dot >= 0) ? 1.0f : -1.0f, target);
glm_quat_lerp(from, target, t, dest);
glm_quat_normalize(dest);
}
/*!
* @brief interpolates between two quaternions
* using spherical linear interpolation (SLERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t amout
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_slerp(versor from, versor to, float t, versor dest) {
CGLM_ALIGN(16) vec4 q1, q2;
float cosTheta, sinTheta, angle;
cosTheta = glm_quat_dot(from, to);
glm_quat_copy(from, q1);
if (fabsf(cosTheta) >= 1.0f) {
glm_quat_copy(q1, dest);
return;
}
if (cosTheta < 0.0f) {
glm_vec4_negate(q1);
cosTheta = -cosTheta;
}
sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
/* LERP to avoid zero division */
if (fabsf(sinTheta) < 0.001f) {
glm_quat_lerp(from, to, t, dest);
return;
}
/* SLERP */
angle = acosf(cosTheta);
glm_vec4_scale(q1, sinf((1.0f - t) * angle), q1);
glm_vec4_scale(to, sinf(t * angle), q2);
glm_vec4_add(q1, q2, q1);
glm_vec4_scale(q1, 1.0f / sinTheta, dest);
}
/*!
* @brief creates view matrix using quaternion as camera orientation
*
* @param[in] eye eye
* @param[in] ori orientation in world space as quaternion
* @param[out] dest view matrix
*/
CGLM_INLINE
void
glm_quat_look(vec3 eye, versor ori, mat4 dest) {
/* orientation */
glm_quat_mat4t(ori, dest);
/* translate */
glm_mat4_mulv3(dest, eye, 1.0f, dest[3]);
glm_vec3_negate(dest[3]);
}
/*!
* @brief creates look rotation quaternion
*
* @param[in] dir direction to look
* @param[in] up up vector
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_quat_for(vec3 dir, vec3 up, versor dest) {
CGLM_ALIGN_MAT mat3 m;
glm_vec3_normalize_to(dir, m[2]);
/* No need to negate in LH, but we use RH here */
glm_vec3_negate(m[2]);
glm_vec3_crossn(up, m[2], m[0]);
glm_vec3_cross(m[2], m[0], m[1]);
glm_mat3_quat(m, dest);
}
/*!
* @brief creates look rotation quaternion using source and
* destination positions p suffix stands for position
*
* @param[in] from source point
* @param[in] to destination point
* @param[in] up up vector
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_quat_forp(vec3 from, vec3 to, vec3 up, versor dest) {
CGLM_ALIGN(8) vec3 dir;
glm_vec3_sub(to, from, dir);
glm_quat_for(dir, up, dest);
}
/*!
* @brief rotate vector using using quaternion
*
* @param[in] q quaternion
* @param[in] v vector to rotate
* @param[out] dest rotated vector
*/
CGLM_INLINE
void
glm_quat_rotatev(versor q, vec3 v, vec3 dest) {
CGLM_ALIGN(16) versor p;
CGLM_ALIGN(8) vec3 u, v1, v2;
float s;
glm_quat_normalize_to(q, p);
glm_quat_imag(p, u);
s = glm_quat_real(p);
glm_vec3_scale(u, 2.0f * glm_vec3_dot(u, v), v1);
glm_vec3_scale(v, s * s - glm_vec3_dot(u, u), v2);
glm_vec3_add(v1, v2, v1);
glm_vec3_cross(u, v, v2);
glm_vec3_scale(v2, 2.0f * s, v2);
glm_vec3_add(v1, v2, dest);
}
/*!
* @brief rotate existing transform matrix using quaternion
*
* @param[in] m existing transform matrix
* @param[in] q quaternion
* @param[out] dest rotated matrix/transform
*/
CGLM_INLINE
void
glm_quat_rotate(mat4 m, versor q, mat4 dest) {
CGLM_ALIGN_MAT mat4 rot;
glm_quat_mat4(q, rot);
glm_mul_rot(m, rot, dest);
}
/*!
* @brief rotate existing transform matrix using quaternion at pivot point
*
* @param[in, out] m existing transform matrix
* @param[in] q quaternion
* @param[out] pivot pivot
*/
CGLM_INLINE
void
glm_quat_rotate_at(mat4 m, versor q, vec3 pivot) {
CGLM_ALIGN(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translate(m, pivot);
glm_quat_rotate(m, q, m);
glm_translate(m, pivotInv);
}
/*!
* @brief rotate NEW transform matrix using quaternion at pivot point
*
* this creates rotation matrix, it assumes you don't have a matrix
*
* this should work faster than glm_quat_rotate_at because it reduces
* one glm_translate.
*
* @param[out] m existing transform matrix
* @param[in] q quaternion
* @param[in] pivot pivot
*/
CGLM_INLINE
void
glm_quat_rotate_atm(mat4 m, versor q, vec3 pivot) {
CGLM_ALIGN(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translate_make(m, pivot);
glm_quat_rotate(m, q, m);
glm_translate(m, pivotInv);
}
#endif /* cglm_quat_h */

77
include/cglm/ray.h Normal file
View File

@ -0,0 +1,77 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE bool glm_line_triangle_intersect(vec3 origin,
vec3 direction,
vec3 v0,
vec3 v1,
vec3 v2,
float *d);
*/
#ifndef cglm_ray_h
#define cglm_ray_h
#include "vec3.h"
/*!
* @brief MöllerTrumbore ray-triangle intersection algorithm
*
* @param[in] origin origin of ray
* @param[in] direction direction of ray
* @param[in] v0 first vertex of triangle
* @param[in] v1 second vertex of triangle
* @param[in] v2 third vertex of triangle
* @param[in, out] d distance to intersection
* @return whether there is intersection
*/
CGLM_INLINE
bool
glm_ray_triangle(vec3 origin,
vec3 direction,
vec3 v0,
vec3 v1,
vec3 v2,
float *d) {
vec3 edge1, edge2, p, t, q;
float det, inv_det, u, v, dist;
const float epsilon = 0.000001f;
glm_vec3_sub(v1, v0, edge1);
glm_vec3_sub(v2, v0, edge2);
glm_vec3_cross(direction, edge2, p);
det = glm_vec3_dot(edge1, p);
if (det > -epsilon && det < epsilon)
return false;
inv_det = 1.0f / det;
glm_vec3_sub(origin, v0, t);
u = inv_det * glm_vec3_dot(t, p);
if (u < 0.0f || u > 1.0f)
return false;
glm_vec3_cross(t, edge1, q);
v = inv_det * glm_vec3_dot(direction, q);
if (v < 0.0f || u + v > 1.0f)
return false;
dist = inv_det * glm_vec3_dot(edge2, q);
if (d)
*d = dist;
return dist > epsilon;
}
#endif

173
include/cglm/simd/arm.h Normal file
View File

@ -0,0 +1,173 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_simd_arm_h
#define cglm_simd_arm_h
#include "intrin.h"
#ifdef CGLM_SIMD_ARM
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || defined(_M_ARM64EC) || defined(__aarch64__)
# define CGLM_ARM64 1
#endif
#define glmm_load(p) vld1q_f32(p)
#define glmm_store(p, a) vst1q_f32(p, a)
#define glmm_set1(x) vdupq_n_f32(x)
#define glmm_128 float32x4_t
#define glmm_splat_x(x) vdupq_lane_f32(vget_low_f32(x), 0)
#define glmm_splat_y(x) vdupq_lane_f32(vget_low_f32(x), 1)
#define glmm_splat_z(x) vdupq_lane_f32(vget_high_f32(x), 0)
#define glmm_splat_w(x) vdupq_lane_f32(vget_high_f32(x), 1)
#define glmm_xor(a, b) \
vreinterpretq_f32_s32(veorq_s32(vreinterpretq_s32_f32(a), \
vreinterpretq_s32_f32(b)))
#define glmm_swplane(v) vextq_f32(v, v, 2)
#define glmm_low(x) vget_low_f32(x)
#define glmm_high(x) vget_high_f32(x)
#define glmm_combine_ll(x, y) vcombine_f32(vget_low_f32(x), vget_low_f32(y))
#define glmm_combine_hl(x, y) vcombine_f32(vget_high_f32(x), vget_low_f32(y))
#define glmm_combine_lh(x, y) vcombine_f32(vget_low_f32(x), vget_high_f32(y))
#define glmm_combine_hh(x, y) vcombine_f32(vget_high_f32(x), vget_high_f32(y))
static inline
float32x4_t
glmm_abs(float32x4_t v) {
return vabsq_f32(v);
}
static inline
float32x4_t
glmm_vhadd(float32x4_t v) {
return vaddq_f32(vaddq_f32(glmm_splat_x(v), glmm_splat_y(v)),
vaddq_f32(glmm_splat_z(v), glmm_splat_w(v)));
/*
this seems slower:
v = vaddq_f32(v, vrev64q_f32(v));
return vaddq_f32(v, vcombine_f32(vget_high_f32(v), vget_low_f32(v)));
*/
}
static inline
float
glmm_hadd(float32x4_t v) {
#if CGLM_ARM64
return vaddvq_f32(v);
#else
v = vaddq_f32(v, vrev64q_f32(v));
v = vaddq_f32(v, vcombine_f32(vget_high_f32(v), vget_low_f32(v)));
return vgetq_lane_f32(v, 0);
#endif
}
static inline
float
glmm_hmin(float32x4_t v) {
float32x2_t t;
t = vpmin_f32(vget_low_f32(v), vget_high_f32(v));
t = vpmin_f32(t, t);
return vget_lane_f32(t, 0);
}
static inline
float
glmm_hmax(float32x4_t v) {
float32x2_t t;
t = vpmax_f32(vget_low_f32(v), vget_high_f32(v));
t = vpmax_f32(t, t);
return vget_lane_f32(t, 0);
}
static inline
float
glmm_dot(float32x4_t a, float32x4_t b) {
return glmm_hadd(vmulq_f32(a, b));
}
static inline
float
glmm_norm(float32x4_t a) {
return sqrtf(glmm_dot(a, a));
}
static inline
float
glmm_norm2(float32x4_t a) {
return glmm_dot(a, a);
}
static inline
float
glmm_norm_one(float32x4_t a) {
return glmm_hadd(glmm_abs(a));
}
static inline
float
glmm_norm_inf(float32x4_t a) {
return glmm_hmax(glmm_abs(a));
}
static inline
float32x4_t
glmm_div(float32x4_t a, float32x4_t b) {
#if CGLM_ARM64
return vdivq_f32(a, b);
#else
/* 2 iterations of Newton-Raphson refinement of reciprocal */
float32x4_t r0, r1;
r0 = vrecpeq_f32(b);
r1 = vrecpsq_f32(r0, b);
r0 = vmulq_f32(r1, r0);
r1 = vrecpsq_f32(r0, b);
r0 = vmulq_f32(r1, r0);
return vmulq_f32(a, r0);
#endif
}
static inline
float32x4_t
glmm_fmadd(float32x4_t a, float32x4_t b, float32x4_t c) {
#if CGLM_ARM64
return vfmaq_f32(c, a, b); /* why vfmaq_f32 is slower than vmlaq_f32 ??? */
#else
return vmlaq_f32(c, a, b);
#endif
}
static inline
float32x4_t
glmm_fnmadd(float32x4_t a, float32x4_t b, float32x4_t c) {
#if CGLM_ARM64
return vfmsq_f32(c, a, b);
#else
return vmlsq_f32(c, a, b);
#endif
}
static inline
float32x4_t
glmm_fmsub(float32x4_t a, float32x4_t b, float32x4_t c) {
#if CGLM_ARM64
return vfmsq_f32(c, a, b);
#else
return vmlsq_f32(c, a, b);
#endif
}
static inline
float32x4_t
glmm_fnmsub(float32x4_t a, float32x4_t b, float32x4_t c) {
return vsubq_f32(vdupq_n_f32(0.0f), glmm_fmadd(a, b, c));
}
#endif
#endif /* cglm_simd_arm_h */

View File

@ -0,0 +1,66 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_affine_mat_avx_h
#define cglm_affine_mat_avx_h
#ifdef __AVX__
#include "../../common.h"
#include "../intrin.h"
#include <immintrin.h>
CGLM_INLINE
void
glm_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
__m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
y0 = glmm_load256(m2[0]); /* h g f e d c b a */
y1 = glmm_load256(m2[2]); /* p o n m l k j i */
y2 = glmm_load256(m1[0]); /* h g f e d c b a */
y3 = glmm_load256(m1[2]); /* p o n m l k j i */
/* 0x03: 0b00000011 */
y4 = _mm256_permute2f128_ps(y2, y2, 0x03); /* d c b a h g f e */
y5 = _mm256_permute2f128_ps(y3, y3, 0x03); /* l k j i p o n m */
/* f f f f a a a a */
/* h h h h c c c c */
/* e e e e b b b b */
/* g g g g d d d d */
y6 = _mm256_permutevar_ps(y0, _mm256_set_epi32(1, 1, 1, 1, 0, 0, 0, 0));
y7 = _mm256_permutevar_ps(y0, _mm256_set_epi32(3, 3, 3, 3, 2, 2, 2, 2));
y8 = _mm256_permutevar_ps(y0, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
y9 = _mm256_permutevar_ps(y0, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
glmm_store256(dest[0],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9))));
/* n n n n i i i i */
/* p p p p k k k k */
/* m m m m j j j j */
/* o o o o l l l l */
y6 = _mm256_permutevar_ps(y1, _mm256_set_epi32(1, 1, 1, 1, 0, 0, 0, 0));
y7 = _mm256_permutevar_ps(y1, _mm256_set_epi32(3, 3, 3, 3, 2, 2, 2, 2));
y8 = _mm256_permutevar_ps(y1, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
y9 = _mm256_permutevar_ps(y1, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
glmm_store256(dest[2],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9))));
}
#endif
#endif /* cglm_affine_mat_avx_h */

View File

@ -0,0 +1,76 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_mat_simd_avx_h
#define cglm_mat_simd_avx_h
#ifdef __AVX__
#include "../../common.h"
#include "../intrin.h"
#include <immintrin.h>
CGLM_INLINE
void
glm_mat4_scale_avx(mat4 m, float s) {
__m256 y0;
y0 = _mm256_set1_ps(s);
glmm_store256(m[0], _mm256_mul_ps(y0, glmm_load256(m[0])));
glmm_store256(m[2], _mm256_mul_ps(y0, glmm_load256(m[2])));
}
CGLM_INLINE
void
glm_mat4_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
__m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
y0 = glmm_load256(m2[0]); /* h g f e d c b a */
y1 = glmm_load256(m2[2]); /* p o n m l k j i */
y2 = glmm_load256(m1[0]); /* h g f e d c b a */
y3 = glmm_load256(m1[2]); /* p o n m l k j i */
/* 0x03: 0b00000011 */
y4 = _mm256_permute2f128_ps(y2, y2, 0x03); /* d c b a h g f e */
y5 = _mm256_permute2f128_ps(y3, y3, 0x03); /* l k j i p o n m */
/* f f f f a a a a */
/* h h h h c c c c */
/* e e e e b b b b */
/* g g g g d d d d */
y6 = _mm256_permutevar_ps(y0, _mm256_set_epi32(1, 1, 1, 1, 0, 0, 0, 0));
y7 = _mm256_permutevar_ps(y0, _mm256_set_epi32(3, 3, 3, 3, 2, 2, 2, 2));
y8 = _mm256_permutevar_ps(y0, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
y9 = _mm256_permutevar_ps(y0, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
glmm_store256(dest[0],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9))));
/* n n n n i i i i */
/* p p p p k k k k */
/* m m m m j j j j */
/* o o o o l l l l */
y6 = _mm256_permutevar_ps(y1, _mm256_set_epi32(1, 1, 1, 1, 0, 0, 0, 0));
y7 = _mm256_permutevar_ps(y1, _mm256_set_epi32(3, 3, 3, 3, 2, 2, 2, 2));
y8 = _mm256_permutevar_ps(y1, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
y9 = _mm256_permutevar_ps(y1, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
glmm_store256(dest[2],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9))));
}
#endif
#endif /* cglm_mat_simd_avx_h */

View File

@ -0,0 +1,90 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_intrin_h
#define cglm_intrin_h
#if defined( _MSC_VER )
# if (defined(_M_AMD64) || defined(_M_X64)) || _M_IX86_FP == 2
# ifndef __SSE2__
# define __SSE2__
# endif
# elif _M_IX86_FP == 1
# ifndef __SSE__
# define __SSE__
# endif
# endif
/* do not use alignment for older visual studio versions */
# if _MSC_VER < 1913 /* Visual Studio 2017 version 15.6 */
# define CGLM_ALL_UNALIGNED
# endif
#endif
#if defined( __SSE__ ) || defined( __SSE2__ )
# include <xmmintrin.h>
# include <emmintrin.h>
# define CGLM_SSE_FP 1
# ifndef CGLM_SIMD_x86
# define CGLM_SIMD_x86
# endif
#endif
#if defined(__SSE3__)
# include <pmmintrin.h>
# ifndef CGLM_SIMD_x86
# define CGLM_SIMD_x86
# endif
#endif
#if defined(__SSE4_1__)
# include <smmintrin.h>
# ifndef CGLM_SIMD_x86
# define CGLM_SIMD_x86
# endif
#endif
#if defined(__SSE4_2__)
# include <nmmintrin.h>
# ifndef CGLM_SIMD_x86
# define CGLM_SIMD_x86
# endif
#endif
#ifdef __AVX__
# include <immintrin.h>
# define CGLM_AVX_FP 1
# ifndef CGLM_SIMD_x86
# define CGLM_SIMD_x86
# endif
#endif
/* ARM Neon */
#if defined(__ARM_NEON)
# include <arm_neon.h>
# if defined(__ARM_NEON_FP)
# define CGLM_NEON_FP 1
# ifndef CGLM_SIMD_ARM
# define CGLM_SIMD_ARM
# endif
# endif
#endif
#if defined(CGLM_SIMD_x86) || defined(CGLM_NEON_FP)
# ifndef CGLM_SIMD
# define CGLM_SIMD
# endif
#endif
#if defined(CGLM_SIMD_x86)
# include "x86.h"
#endif
#if defined(CGLM_SIMD_ARM)
# include "arm.h"
#endif
#endif /* cglm_intrin_h */

View File

@ -0,0 +1,121 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_affine_neon_h
#define cglm_affine_neon_h
#if defined(__ARM_NEON_FP)
#include "../../common.h"
#include "../intrin.h"
CGLM_INLINE
void
glm_mul_neon(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
glmm_128 l, r0, r1, r2, r3, v0, v1, v2, v3;
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
r3 = glmm_load(m2[3]);
v0 = vmulq_f32(glmm_splat_x(r0), l);
v1 = vmulq_f32(glmm_splat_x(r1), l);
v2 = vmulq_f32(glmm_splat_x(r2), l);
v3 = vmulq_f32(glmm_splat_x(r3), l);
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_y(r3), l, v3);
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_z(r3), l, v3);
v3 = glmm_fmadd(glmm_splat_w(r3), glmm_load(m1[3]), v3);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], v3);
}
CGLM_INLINE
void
glm_mul_rot_neon(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
glmm_128 l, r0, r1, r2, v0, v1, v2;
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
v0 = vmulq_f32(glmm_splat_x(r0), l);
v1 = vmulq_f32(glmm_splat_x(r1), l);
v2 = vmulq_f32(glmm_splat_x(r2), l);
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], glmm_load(m1[3]));
}
CGLM_INLINE
void
glm_inv_tr_neon(mat4 mat) {
float32x4x4_t vmat;
glmm_128 r0, r1, r2, x0;
vmat = vld4q_f32(mat[0]);
r0 = vmat.val[0];
r1 = vmat.val[1];
r2 = vmat.val[2];
x0 = glmm_fmadd(r0, glmm_splat_w(r0),
glmm_fmadd(r1, glmm_splat_w(r1),
vmulq_f32(r2, glmm_splat_w(r2))));
x0 = vnegq_f32(x0);
glmm_store(mat[0], r0);
glmm_store(mat[1], r1);
glmm_store(mat[2], r2);
glmm_store(mat[3], x0);
mat[0][3] = 0.0f;
mat[1][3] = 0.0f;
mat[2][3] = 0.0f;
mat[3][3] = 1.0f;
/* TODO: ?
zo = vget_high_f32(r3);
vst1_lane_f32(&mat[0][3], zo, 0);
vst1_lane_f32(&mat[1][3], zo, 0);
vst1_lane_f32(&mat[2][3], zo, 0);
vst1_lane_f32(&mat[3][3], zo, 1);
*/
}
#endif
#endif /* cglm_affine_neon_h */

View File

@ -0,0 +1,44 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_mat2_neon_h
#define cglm_mat2_neon_h
#if defined(__ARM_NEON_FP)
#include "../../common.h"
#include "../intrin.h"
CGLM_INLINE
void
glm_mat2_mul_neon(mat2 m1, mat2 m2, mat2 dest) {
float32x4x2_t a1;
glmm_128 x0, x1, x2;
float32x2_t dc, ba;
x1 = glmm_load(m1[0]); /* d c b a */
x2 = glmm_load(m2[0]); /* h g f e */
dc = vget_high_f32(x1);
ba = vget_low_f32(x1);
/* g g e e, h h f f */
a1 = vtrnq_f32(x2, x2);
/*
dest[0][0] = a * e + c * f;
dest[0][1] = b * e + d * f;
dest[1][0] = a * g + c * h;
dest[1][1] = b * g + d * h;
*/
x0 = glmm_fmadd(vcombine_f32(ba, ba), a1.val[0],
vmulq_f32(vcombine_f32(dc, dc), a1.val[1]));
glmm_store(dest[0], x0);
}
#endif
#endif /* cglm_mat2_neon_h */

View File

@ -0,0 +1,317 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_mat4_neon_h
#define cglm_mat4_neon_h
#if defined(__ARM_NEON_FP)
#include "../../common.h"
#include "../intrin.h"
CGLM_INLINE
void
glm_mat4_scale_neon(mat4 m, float s) {
float32x4_t v0;
v0 = vdupq_n_f32(s);
vst1q_f32(m[0], vmulq_f32(vld1q_f32(m[0]), v0));
vst1q_f32(m[1], vmulq_f32(vld1q_f32(m[1]), v0));
vst1q_f32(m[2], vmulq_f32(vld1q_f32(m[2]), v0));
vst1q_f32(m[3], vmulq_f32(vld1q_f32(m[3]), v0));
}
CGLM_INLINE
void
glm_mat4_transp_neon(mat4 m, mat4 dest) {
float32x4x4_t vmat;
vmat = vld4q_f32(m[0]);
vst1q_f32(dest[0], vmat.val[0]);
vst1q_f32(dest[1], vmat.val[1]);
vst1q_f32(dest[2], vmat.val[2]);
vst1q_f32(dest[3], vmat.val[3]);
}
CGLM_INLINE
void
glm_mat4_mul_neon(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
glmm_128 l, r0, r1, r2, r3, v0, v1, v2, v3;
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
r3 = glmm_load(m2[3]);
v0 = vmulq_f32(glmm_splat_x(r0), l);
v1 = vmulq_f32(glmm_splat_x(r1), l);
v2 = vmulq_f32(glmm_splat_x(r2), l);
v3 = vmulq_f32(glmm_splat_x(r3), l);
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_y(r3), l, v3);
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_z(r3), l, v3);
l = glmm_load(m1[3]);
v0 = glmm_fmadd(glmm_splat_w(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_w(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_w(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_w(r3), l, v3);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], v3);
}
CGLM_INLINE
void
glm_mat4_mulv_neon(mat4 m, vec4 v, vec4 dest) {
float32x4_t l0, l1, l2, l3;
float32x2_t vlo, vhi;
l0 = vld1q_f32(m[0]);
l1 = vld1q_f32(m[1]);
l2 = vld1q_f32(m[2]);
l3 = vld1q_f32(m[3]);
vlo = vld1_f32(&v[0]);
vhi = vld1_f32(&v[2]);
l0 = vmulq_lane_f32(l0, vlo, 0);
l0 = vmlaq_lane_f32(l0, l1, vlo, 1);
l0 = vmlaq_lane_f32(l0, l2, vhi, 0);
l0 = vmlaq_lane_f32(l0, l3, vhi, 1);
vst1q_f32(dest, l0);
}
CGLM_INLINE
float
glm_mat4_det_neon(mat4 mat) {
float32x4_t r0, r1, r2, r3, x0, x1, x2;
float32x2_t ij, op, mn, kl, nn, mm, jj, ii, gh, ef, t12, t34;
float32x4x2_t a1;
float32x4_t x3 = { 0.f, -0.f, 0.f, -0.f };
/* 127 <- 0, [square] det(A) = det(At) */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = vrev64q_f32(glmm_load(mat[1])); /* g h e f */
r2 = vrev64q_f32(glmm_load(mat[2])); /* l k i j */
r3 = vrev64q_f32(glmm_load(mat[3])); /* o p m n */
gh = vget_high_f32(r1);
ef = vget_low_f32(r1);
kl = vget_high_f32(r2);
ij = vget_low_f32(r2);
op = vget_high_f32(r3);
mn = vget_low_f32(r3);
mm = vdup_lane_f32(mn, 1);
nn = vdup_lane_f32(mn, 0);
ii = vdup_lane_f32(ij, 1);
jj = vdup_lane_f32(ij, 0);
/*
t[1] = j * p - n * l;
t[2] = j * o - n * k;
t[3] = i * p - m * l;
t[4] = i * o - m * k;
*/
x0 = glmm_fnmadd(vcombine_f32(kl, kl), vcombine_f32(nn, mm),
vmulq_f32(vcombine_f32(op, op), vcombine_f32(jj, ii)));
t12 = vget_low_f32(x0);
t34 = vget_high_f32(x0);
/* 1 3 1 3 2 4 2 4 */
a1 = vuzpq_f32(x0, x0);
/*
t[0] = k * p - o * l;
t[0] = k * p - o * l;
t[5] = i * n - m * j;
t[5] = i * n - m * j;
*/
x1 = glmm_fnmadd(vcombine_f32(vdup_lane_f32(kl, 0), jj),
vcombine_f32(vdup_lane_f32(op, 1), mm),
vmulq_f32(vcombine_f32(vdup_lane_f32(op, 0), nn),
vcombine_f32(vdup_lane_f32(kl, 1), ii)));
/*
a * (f * t[0] - g * t[1] + h * t[2])
- b * (e * t[0] - g * t[3] + h * t[4])
+ c * (e * t[1] - f * t[3] + h * t[5])
- d * (e * t[2] - f * t[4] + g * t[5])
*/
x2 = glmm_fnmadd(vcombine_f32(vdup_lane_f32(gh, 1), vdup_lane_f32(ef, 0)),
vcombine_f32(vget_low_f32(a1.val[0]), t34),
vmulq_f32(vcombine_f32(ef, vdup_lane_f32(ef, 1)),
vcombine_f32(vget_low_f32(x1), t12)));
x2 = glmm_fmadd(vcombine_f32(vdup_lane_f32(gh, 0), gh),
vcombine_f32(vget_low_f32(a1.val[1]), vget_high_f32(x1)), x2);
x2 = glmm_xor(x2, x3);
return glmm_hadd(vmulq_f32(x2, r0));
}
CGLM_INLINE
void
glm_mat4_inv_neon(mat4 mat, mat4 dest) {
float32x4_t r0, r1, r2, r3,
v0, v1, v2, v3,
t0, t1, t2, t3, t4, t5,
x0, x1, x2, x3, x4, x5, x6, x7, x8;
float32x4x2_t a1;
float32x2_t lp, ko, hg, jn, im, fe, ae, bf, cg, dh;
float32x4_t x9 = { -0.f, 0.f, -0.f, 0.f };
x8 = vrev64q_f32(x9);
/* 127 <- 0 */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = glmm_load(mat[1]); /* h g f e */
r2 = glmm_load(mat[2]); /* l k j i */
r3 = glmm_load(mat[3]); /* p o n m */
/* l p k o, j n i m */
a1 = vzipq_f32(r3, r2);
jn = vget_high_f32(a1.val[0]);
im = vget_low_f32(a1.val[0]);
lp = vget_high_f32(a1.val[1]);
ko = vget_low_f32(a1.val[1]);
hg = vget_high_f32(r1);
x1 = vcombine_f32(vdup_lane_f32(lp, 0), lp); /* l p p p */
x2 = vcombine_f32(vdup_lane_f32(ko, 0), ko); /* k o o o */
x0 = vcombine_f32(vdup_lane_f32(lp, 1), vdup_lane_f32(hg, 1)); /* h h l l */
x3 = vcombine_f32(vdup_lane_f32(ko, 1), vdup_lane_f32(hg, 0)); /* g g k k */
/* t1[0] = k * p - o * l;
t1[0] = k * p - o * l;
t2[0] = g * p - o * h;
t3[0] = g * l - k * h; */
t0 = glmm_fnmadd(x2, x0, vmulq_f32(x3, x1));
fe = vget_low_f32(r1);
x4 = vcombine_f32(vdup_lane_f32(jn, 0), jn); /* j n n n */
x5 = vcombine_f32(vdup_lane_f32(jn, 1), vdup_lane_f32(fe, 1)); /* f f j j */
/* t1[1] = j * p - n * l;
t1[1] = j * p - n * l;
t2[1] = f * p - n * h;
t3[1] = f * l - j * h; */
t1 = glmm_fnmadd(x4, x0, vmulq_f32(x5, x1));
/* t1[2] = j * o - n * k
t1[2] = j * o - n * k;
t2[2] = f * o - n * g;
t3[2] = f * k - j * g; */
t2 = glmm_fnmadd(x4, x3, vmulq_f32(x5, x2));
x6 = vcombine_f32(vdup_lane_f32(im, 1), vdup_lane_f32(fe, 0)); /* e e i i */
x7 = vcombine_f32(vdup_lane_f32(im, 0), im); /* i m m m */
/* t1[3] = i * p - m * l;
t1[3] = i * p - m * l;
t2[3] = e * p - m * h;
t3[3] = e * l - i * h; */
t3 = glmm_fnmadd(x7, x0, vmulq_f32(x6, x1));
/* t1[4] = i * o - m * k;
t1[4] = i * o - m * k;
t2[4] = e * o - m * g;
t3[4] = e * k - i * g; */
t4 = glmm_fnmadd(x7, x3, vmulq_f32(x6, x2));
/* t1[5] = i * n - m * j;
t1[5] = i * n - m * j;
t2[5] = e * n - m * f;
t3[5] = e * j - i * f; */
t5 = glmm_fnmadd(x7, x5, vmulq_f32(x6, x4));
/* h d f b, g c e a */
a1 = vtrnq_f32(r0, r1);
x4 = vrev64q_f32(a1.val[0]); /* c g a e */
x5 = vrev64q_f32(a1.val[1]); /* d h b f */
ae = vget_low_f32(x4);
cg = vget_high_f32(x4);
bf = vget_low_f32(x5);
dh = vget_high_f32(x5);
x0 = vcombine_f32(ae, vdup_lane_f32(ae, 1)); /* a a a e */
x1 = vcombine_f32(bf, vdup_lane_f32(bf, 1)); /* b b b f */
x2 = vcombine_f32(cg, vdup_lane_f32(cg, 1)); /* c c c g */
x3 = vcombine_f32(dh, vdup_lane_f32(dh, 1)); /* d d d h */
/*
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
dest[0][1] =-(b * t1[0] - c * t1[1] + d * t1[2]);
dest[0][2] = b * t2[0] - c * t2[1] + d * t2[2];
dest[0][3] =-(b * t3[0] - c * t3[1] + d * t3[2]); */
v0 = glmm_xor(glmm_fmadd(x3, t2, glmm_fnmadd(x2, t1, vmulq_f32(x1, t0))), x8);
/*
dest[2][0] = e * t1[1] - f * t1[3] + h * t1[5];
dest[2][1] =-(a * t1[1] - b * t1[3] + d * t1[5]);
dest[2][2] = a * t2[1] - b * t2[3] + d * t2[5];
dest[2][3] =-(a * t3[1] - b * t3[3] + d * t3[5]);*/
v2 = glmm_xor(glmm_fmadd(x3, t5, glmm_fnmadd(x1, t3, vmulq_f32(x0, t1))), x8);
/*
dest[1][0] =-(e * t1[0] - g * t1[3] + h * t1[4]);
dest[1][1] = a * t1[0] - c * t1[3] + d * t1[4];
dest[1][2] =-(a * t2[0] - c * t2[3] + d * t2[4]);
dest[1][3] = a * t3[0] - c * t3[3] + d * t3[4]; */
v1 = glmm_xor(glmm_fmadd(x3, t4, glmm_fnmadd(x2, t3, vmulq_f32(x0, t0))), x9);
/*
dest[3][0] =-(e * t1[2] - f * t1[4] + g * t1[5]);
dest[3][1] = a * t1[2] - b * t1[4] + c * t1[5];
dest[3][2] =-(a * t2[2] - b * t2[4] + c * t2[5]);
dest[3][3] = a * t3[2] - b * t3[4] + c * t3[5]; */
v3 = glmm_xor(glmm_fmadd(x2, t5, glmm_fnmadd(x1, t4, vmulq_f32(x0, t2))), x9);
/* determinant */
x0 = vcombine_f32(vget_low_f32(vzipq_f32(v0, v1).val[0]),
vget_low_f32(vzipq_f32(v2, v3).val[0]));
/*
x0 = glmm_div(glmm_set1(1.0f), glmm_vhadd(vmulq_f32(x0, r0)));
glmm_store(dest[0], vmulq_f32(v0, x0));
glmm_store(dest[1], vmulq_f32(v1, x0));
glmm_store(dest[2], vmulq_f32(v2, x0));
glmm_store(dest[3], vmulq_f32(v3, x0));
*/
x0 = glmm_vhadd(vmulq_f32(x0, r0));
glmm_store(dest[0], glmm_div(v0, x0));
glmm_store(dest[1], glmm_div(v1, x0));
glmm_store(dest[2], glmm_div(v2, x0));
glmm_store(dest[3], glmm_div(v3, x0));
}
#endif
#endif /* cglm_mat4_neon_h */

View File

@ -0,0 +1,56 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_quat_neon_h
#define cglm_quat_neon_h
#if defined(__ARM_NEON_FP)
#include "../../common.h"
#include "../intrin.h"
CGLM_INLINE
void
glm_quat_mul_neon(versor p, versor q, versor dest) {
/*
+ (a1 b2 + b1 a2 + c1 d2 d1 c2)i
+ (a1 c2 b1 d2 + c1 a2 + d1 b2)j
+ (a1 d2 + b1 c2 c1 b2 + d1 a2)k
a1 a2 b1 b2 c1 c2 d1 d2
*/
glmm_128 xp, xq, xqr, r, x, y, z, s2, s3;
glmm_128 s1 = {-0.f, 0.f, 0.f, -0.f};
float32x2_t qh, ql;
xp = glmm_load(p); /* 3 2 1 0 */
xq = glmm_load(q);
r = vmulq_f32(glmm_splat_w(xp), xq);
x = glmm_splat_x(xp);
y = glmm_splat_y(xp);
z = glmm_splat_z(xp);
ql = vget_high_f32(s1);
s3 = vcombine_f32(ql, ql);
s2 = vzipq_f32(s3, s3).val[0];
xqr = vrev64q_f32(xq);
qh = vget_high_f32(xqr);
ql = vget_low_f32(xqr);
r = glmm_fmadd(glmm_xor(x, s3), vcombine_f32(qh, ql), r);
r = glmm_fmadd(glmm_xor(y, s2), vcombine_f32(vget_high_f32(xq),
vget_low_f32(xq)), r);
r = glmm_fmadd(glmm_xor(z, s1), vcombine_f32(ql, qh), r);
glmm_store(dest, r);
}
#endif
#endif /* cglm_quat_neon_h */

View File

@ -0,0 +1,115 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_affine_mat_sse2_h
#define cglm_affine_mat_sse2_h
#if defined( __SSE__ ) || defined( __SSE2__ )
#include "../../common.h"
#include "../intrin.h"
CGLM_INLINE
void
glm_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
glmm_128 l, r0, r1, r2, r3, v0, v1, v2, v3;
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
r3 = glmm_load(m2[3]);
v0 = _mm_mul_ps(glmm_splat_x(r0), l);
v1 = _mm_mul_ps(glmm_splat_x(r1), l);
v2 = _mm_mul_ps(glmm_splat_x(r2), l);
v3 = _mm_mul_ps(glmm_splat_x(r3), l);
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_y(r3), l, v3);
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_z(r3), l, v3);
l = glmm_load(m1[3]);
v3 = glmm_fmadd(glmm_splat_w(r3), l, v3);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], v3);
}
CGLM_INLINE
void
glm_mul_rot_sse2(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
glmm_128 l, r0, r1, r2, v0, v1, v2;
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
v0 = _mm_mul_ps(glmm_splat_x(r0), l);
v1 = _mm_mul_ps(glmm_splat_x(r1), l);
v2 = _mm_mul_ps(glmm_splat_x(r2), l);
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], glmm_load(m1[3]));
}
CGLM_INLINE
void
glm_inv_tr_sse2(mat4 mat) {
__m128 r0, r1, r2, r3, x0, x1, x2, x3, x4, x5;
r0 = glmm_load(mat[0]);
r1 = glmm_load(mat[1]);
r2 = glmm_load(mat[2]);
r3 = glmm_load(mat[3]);
x1 = _mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f);
_MM_TRANSPOSE4_PS(r0, r1, r2, x1);
x2 = glmm_shuff1(r3, 0, 0, 0, 0);
x3 = glmm_shuff1(r3, 1, 1, 1, 1);
x4 = glmm_shuff1(r3, 2, 2, 2, 2);
x5 = _mm_set1_ps(-0.f);
x0 = glmm_fmadd(r0, x2, glmm_fmadd(r1, x3, _mm_mul_ps(r2, x4)));
x0 = _mm_xor_ps(x0, x5);
x0 = _mm_add_ps(x0, x1);
glmm_store(mat[0], r0);
glmm_store(mat[1], r1);
glmm_store(mat[2], r2);
glmm_store(mat[3], x0);
}
#endif
#endif /* cglm_affine_mat_sse2_h */

View File

@ -0,0 +1,48 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_mat2_sse_h
#define cglm_mat2_sse_h
#if defined( __SSE__ ) || defined( __SSE2__ )
#include "../../common.h"
#include "../intrin.h"
CGLM_INLINE
void
glm_mat2_mul_sse2(mat2 m1, mat2 m2, mat2 dest) {
__m128 x0, x1, x2, x3, x4;
x1 = glmm_load(m1[0]); /* d c b a */
x2 = glmm_load(m2[0]); /* h g f e */
x3 = glmm_shuff1(x2, 2, 2, 0, 0);
x4 = glmm_shuff1(x2, 3, 3, 1, 1);
x0 = _mm_movelh_ps(x1, x1);
x2 = _mm_movehl_ps(x1, x1);
/*
dest[0][0] = a * e + c * f;
dest[0][1] = b * e + d * f;
dest[1][0] = a * g + c * h;
dest[1][1] = b * g + d * h;
*/
x0 = glmm_fmadd(x0, x3, _mm_mul_ps(x2, x4));
glmm_store(dest[0], x0);
}
CGLM_INLINE
void
glm_mat2_transp_sse2(mat2 m, mat2 dest) {
/* d c b a */
/* d b c a */
glmm_store(dest[0], glmm_shuff1(glmm_load(m[0]), 3, 1, 2, 0));
}
#endif
#endif /* cglm_mat2_sse_h */

View File

@ -0,0 +1,76 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_mat3_sse_h
#define cglm_mat3_sse_h
#if defined( __SSE__ ) || defined( __SSE2__ )
#include "../../common.h"
#include "../intrin.h"
CGLM_INLINE
void
glm_mat3_mul_sse2(mat3 m1, mat3 m2, mat3 dest) {
__m128 l0, l1, l2, r0, r1, r2, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9;
l0 = _mm_loadu_ps(m1[0]);
l1 = _mm_loadu_ps(&m1[1][1]);
r0 = _mm_loadu_ps(m2[0]);
r1 = _mm_loadu_ps(&m2[1][1]);
x8 = glmm_shuff1(l0, 0, 2, 1, 0); /* a00 a02 a01 a00 */
x1 = glmm_shuff1(r0, 3, 0, 0, 0); /* b10 b00 b00 b00 */
x2 = _mm_shuffle_ps(l0, l1, _MM_SHUFFLE(1, 0, 3, 3)); /* a12 a11 a10 a10 */
x3 = _mm_shuffle_ps(r0, r1, _MM_SHUFFLE(2, 0, 3, 1)); /* b20 b11 b10 b01 */
x0 = _mm_mul_ps(x8, x1);
x6 = glmm_shuff1(l0, 1, 0, 2, 1); /* a01 a00 a02 a01 */
x7 = glmm_shuff1(x3, 3, 3, 1, 1); /* b20 b20 b10 b10 */
l2 = _mm_load_ss(&m1[2][2]);
r2 = _mm_load_ss(&m2[2][2]);
x1 = _mm_mul_ps(x6, x7);
l2 = glmm_shuff1(l2, 0, 0, 1, 0); /* a22 a22 0.f a22 */
r2 = glmm_shuff1(r2, 0, 0, 1, 0); /* b22 b22 0.f b22 */
x4 = glmm_shuff1(x2, 0, 3, 2, 0); /* a10 a12 a11 a10 */
x5 = glmm_shuff1(x2, 2, 0, 3, 2); /* a11 a10 a12 a11 */
x6 = glmm_shuff1(x3, 2, 0, 0, 0); /* b11 b01 b01 b01 */
x2 = glmm_shuff1(r1, 3, 3, 0, 0); /* b21 b21 b11 b11 */
x8 = _mm_unpackhi_ps(x8, x4); /* a10 a00 a12 a02 */
x9 = _mm_unpackhi_ps(x7, x2); /* b21 b20 b21 b20 */
x0 = glmm_fmadd(x4, x6, x0);
x1 = glmm_fmadd(x5, x2, x1);
x2 = _mm_movehl_ps(l2, l1); /* a22 a22 a21 a20 */
x3 = glmm_shuff1(x2, 0, 2, 1, 0); /* a20 a22 a21 a20 */
x2 = glmm_shuff1(x2, 1, 0, 2, 1); /* a21 a20 a22 a21 */
x4 = _mm_shuffle_ps(r0, r1, _MM_SHUFFLE(1, 1, 2, 2)); /* b12 b12 b02 b02 */
x5 = glmm_shuff1(x4, 3, 0, 0, 0); /* b12 b02 b02 b02 */
x4 = _mm_movehl_ps(r2, x4); /* b22 b22 b12 b12 */
x0 = glmm_fmadd(x3, x5, x0);
x1 = glmm_fmadd(x2, x4, x1);
/*
Dot Product : dest[2][2] = a02 * b20 +
a12 * b21 +
a22 * b22 +
0 * 00 */
x2 = _mm_movelh_ps(x8, l2); /* 0.f a22 a12 a02 */
x3 = _mm_movelh_ps(x9, r2); /* 0.f b22 b21 b20 */
x2 = glmm_vdots(x2, x3);
_mm_storeu_ps(&dest[0][0], x0);
_mm_storeu_ps(&dest[1][1], x1);
_mm_store_ss (&dest[2][2], x2);
}
#endif
#endif /* cglm_mat3_sse_h */

View File

@ -0,0 +1,434 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_mat_sse_h
#define cglm_mat_sse_h
#if defined( __SSE__ ) || defined( __SSE2__ )
#include "../../common.h"
#include "../intrin.h"
#define glm_mat4_inv_precise_sse2(mat, dest) glm_mat4_inv_sse2(mat, dest)
CGLM_INLINE
void
glm_mat4_scale_sse2(mat4 m, float s) {
__m128 x0;
x0 = _mm_set1_ps(s);
glmm_store(m[0], _mm_mul_ps(glmm_load(m[0]), x0));
glmm_store(m[1], _mm_mul_ps(glmm_load(m[1]), x0));
glmm_store(m[2], _mm_mul_ps(glmm_load(m[2]), x0));
glmm_store(m[3], _mm_mul_ps(glmm_load(m[3]), x0));
}
CGLM_INLINE
void
glm_mat4_transp_sse2(mat4 m, mat4 dest) {
__m128 r0, r1, r2, r3;
r0 = glmm_load(m[0]);
r1 = glmm_load(m[1]);
r2 = glmm_load(m[2]);
r3 = glmm_load(m[3]);
_MM_TRANSPOSE4_PS(r0, r1, r2, r3);
glmm_store(dest[0], r0);
glmm_store(dest[1], r1);
glmm_store(dest[2], r2);
glmm_store(dest[3], r3);
}
CGLM_INLINE
void
glm_mat4_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
glmm_128 l, r0, r1, r2, r3, v0, v1, v2, v3;
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
r3 = glmm_load(m2[3]);
v0 = _mm_mul_ps(glmm_splat_x(r0), l);
v1 = _mm_mul_ps(glmm_splat_x(r1), l);
v2 = _mm_mul_ps(glmm_splat_x(r2), l);
v3 = _mm_mul_ps(glmm_splat_x(r3), l);
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_y(r3), l, v3);
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_z(r3), l, v3);
l = glmm_load(m1[3]);
v0 = glmm_fmadd(glmm_splat_w(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_w(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_w(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_w(r3), l, v3);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], v3);
}
CGLM_INLINE
void
glm_mat4_mulv_sse2(mat4 m, vec4 v, vec4 dest) {
__m128 x0, x1, m0, m1, m2, m3, v0, v1, v2, v3;
m0 = glmm_load(m[0]);
m1 = glmm_load(m[1]);
m2 = glmm_load(m[2]);
m3 = glmm_load(m[3]);
x0 = glmm_load(v);
v0 = glmm_splat_x(x0);
v1 = glmm_splat_y(x0);
v2 = glmm_splat_z(x0);
v3 = glmm_splat_w(x0);
x1 = _mm_mul_ps(m3, v3);
x1 = glmm_fmadd(m2, v2, x1);
x1 = glmm_fmadd(m1, v1, x1);
x1 = glmm_fmadd(m0, v0, x1);
glmm_store(dest, x1);
}
CGLM_INLINE
float
glm_mat4_det_sse2(mat4 mat) {
__m128 r0, r1, r2, r3, x0, x1, x2;
/* 127 <- 0, [square] det(A) = det(At) */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = glmm_load(mat[1]); /* h g f e */
r2 = glmm_load(mat[2]); /* l k j i */
r3 = glmm_load(mat[3]); /* p o n m */
/*
t[1] = j * p - n * l;
t[2] = j * o - n * k;
t[3] = i * p - m * l;
t[4] = i * o - m * k;
*/
x0 = glmm_fnmadd(glmm_shuff1(r3, 0, 0, 1, 1), glmm_shuff1(r2, 2, 3, 2, 3),
_mm_mul_ps(glmm_shuff1(r2, 0, 0, 1, 1),
glmm_shuff1(r3, 2, 3, 2, 3)));
/*
t[0] = k * p - o * l;
t[0] = k * p - o * l;
t[5] = i * n - m * j;
t[5] = i * n - m * j;
*/
x1 = glmm_fnmadd(glmm_shuff1(r3, 0, 0, 2, 2), glmm_shuff1(r2, 1, 1, 3, 3),
_mm_mul_ps(glmm_shuff1(r2, 0, 0, 2, 2),
glmm_shuff1(r3, 1, 1, 3, 3)));
/*
a * (f * t[0] - g * t[1] + h * t[2])
- b * (e * t[0] - g * t[3] + h * t[4])
+ c * (e * t[1] - f * t[3] + h * t[5])
- d * (e * t[2] - f * t[4] + g * t[5])
*/
x2 = glmm_fnmadd(glmm_shuff1(r1, 1, 1, 2, 2), glmm_shuff1(x0, 3, 2, 2, 0),
_mm_mul_ps(glmm_shuff1(r1, 0, 0, 0, 1),
_mm_shuffle_ps(x1, x0, _MM_SHUFFLE(1, 0, 0, 0))));
x2 = glmm_fmadd(glmm_shuff1(r1, 2, 3, 3, 3),
_mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 2, 3, 1)),
x2);
x2 = _mm_xor_ps(x2, _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
return glmm_hadd(_mm_mul_ps(x2, r0));
}
CGLM_INLINE
void
glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
__m128 r0, r1, r2, r3,
v0, v1, v2, v3,
t0, t1, t2, t3, t4, t5,
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9;
x8 = _mm_set_ps(-0.f, 0.f, -0.f, 0.f);
x9 = glmm_shuff1(x8, 2, 1, 2, 1);
/* 127 <- 0 */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = glmm_load(mat[1]); /* h g f e */
r2 = glmm_load(mat[2]); /* l k j i */
r3 = glmm_load(mat[3]); /* p o n m */
x0 = _mm_movehl_ps(r3, r2); /* p o l k */
x3 = _mm_movelh_ps(r2, r3); /* n m j i */
x1 = glmm_shuff1(x0, 1, 3, 3 ,3); /* l p p p */
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
x4 = glmm_shuff1(x3, 1, 3, 3, 3); /* j n n n */
x7 = glmm_shuff1(x3, 0, 2, 2, 2); /* i m m m */
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
t0 = _mm_mul_ps(x3, x1);
t1 = _mm_mul_ps(x5, x1);
t2 = _mm_mul_ps(x5, x2);
t3 = _mm_mul_ps(x6, x1);
t4 = _mm_mul_ps(x6, x2);
t5 = _mm_mul_ps(x6, x4);
/* t1[0] = k * p - o * l;
t1[0] = k * p - o * l;
t2[0] = g * p - o * h;
t3[0] = g * l - k * h; */
t0 = glmm_fnmadd(x2, x0, t0);
/* t1[1] = j * p - n * l;
t1[1] = j * p - n * l;
t2[1] = f * p - n * h;
t3[1] = f * l - j * h; */
t1 = glmm_fnmadd(x4, x0, t1);
/* t1[2] = j * o - n * k
t1[2] = j * o - n * k;
t2[2] = f * o - n * g;
t3[2] = f * k - j * g; */
t2 = glmm_fnmadd(x4, x3, t2);
/* t1[3] = i * p - m * l;
t1[3] = i * p - m * l;
t2[3] = e * p - m * h;
t3[3] = e * l - i * h; */
t3 = glmm_fnmadd(x7, x0, t3);
/* t1[4] = i * o - m * k;
t1[4] = i * o - m * k;
t2[4] = e * o - m * g;
t3[4] = e * k - i * g; */
t4 = glmm_fnmadd(x7, x3, t4);
/* t1[5] = i * n - m * j;
t1[5] = i * n - m * j;
t2[5] = e * n - m * f;
t3[5] = e * j - i * f; */
t5 = glmm_fnmadd(x7, x5, t5);
x4 = _mm_movelh_ps(r0, r1); /* f e b a */
x5 = _mm_movehl_ps(r1, r0); /* h g d c */
x0 = glmm_shuff1(x4, 0, 0, 0, 2); /* a a a e */
x1 = glmm_shuff1(x4, 1, 1, 1, 3); /* b b b f */
x2 = glmm_shuff1(x5, 0, 0, 0, 2); /* c c c g */
x3 = glmm_shuff1(x5, 1, 1, 1, 3); /* d d d h */
v2 = _mm_mul_ps(x0, t1);
v1 = _mm_mul_ps(x0, t0);
v3 = _mm_mul_ps(x0, t2);
v0 = _mm_mul_ps(x1, t0);
v2 = glmm_fnmadd(x1, t3, v2);
v3 = glmm_fnmadd(x1, t4, v3);
v0 = glmm_fnmadd(x2, t1, v0);
v1 = glmm_fnmadd(x2, t3, v1);
v3 = glmm_fmadd(x2, t5, v3);
v0 = glmm_fmadd(x3, t2, v0);
v2 = glmm_fmadd(x3, t5, v2);
v1 = glmm_fmadd(x3, t4, v1);
/*
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
dest[0][1] =-(b * t1[0] - c * t1[1] + d * t1[2]);
dest[0][2] = b * t2[0] - c * t2[1] + d * t2[2];
dest[0][3] =-(b * t3[0] - c * t3[1] + d * t3[2]); */
v0 = _mm_xor_ps(v0, x8);
/*
dest[2][0] = e * t1[1] - f * t1[3] + h * t1[5];
dest[2][1] =-(a * t1[1] - b * t1[3] + d * t1[5]);
dest[2][2] = a * t2[1] - b * t2[3] + d * t2[5];
dest[2][3] =-(a * t3[1] - b * t3[3] + d * t3[5]);*/
v2 = _mm_xor_ps(v2, x8);
/*
dest[1][0] =-(e * t1[0] - g * t1[3] + h * t1[4]);
dest[1][1] = a * t1[0] - c * t1[3] + d * t1[4];
dest[1][2] =-(a * t2[0] - c * t2[3] + d * t2[4]);
dest[1][3] = a * t3[0] - c * t3[3] + d * t3[4]; */
v1 = _mm_xor_ps(v1, x9);
/*
dest[3][0] =-(e * t1[2] - f * t1[4] + g * t1[5]);
dest[3][1] = a * t1[2] - b * t1[4] + c * t1[5];
dest[3][2] =-(a * t2[2] - b * t2[4] + c * t2[5]);
dest[3][3] = a * t3[2] - b * t3[4] + c * t3[5]; */
v3 = _mm_xor_ps(v3, x9);
/* determinant */
x0 = _mm_shuffle_ps(v0, v1, _MM_SHUFFLE(0, 0, 0, 0));
x1 = _mm_shuffle_ps(v2, v3, _MM_SHUFFLE(0, 0, 0, 0));
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
x0 = _mm_rcp_ps(glmm_vhadd(_mm_mul_ps(x0, r0)));
glmm_store(dest[0], _mm_mul_ps(v0, x0));
glmm_store(dest[1], _mm_mul_ps(v1, x0));
glmm_store(dest[2], _mm_mul_ps(v2, x0));
glmm_store(dest[3], _mm_mul_ps(v3, x0));
}
CGLM_INLINE
void
glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
__m128 r0, r1, r2, r3,
v0, v1, v2, v3,
t0, t1, t2, t3, t4, t5,
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9;
x8 = _mm_set_ps(-0.f, 0.f, -0.f, 0.f);
x9 = glmm_shuff1(x8, 2, 1, 2, 1);
/* 127 <- 0 */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = glmm_load(mat[1]); /* h g f e */
r2 = glmm_load(mat[2]); /* l k j i */
r3 = glmm_load(mat[3]); /* p o n m */
x0 = _mm_movehl_ps(r3, r2); /* p o l k */
x3 = _mm_movelh_ps(r2, r3); /* n m j i */
x1 = glmm_shuff1(x0, 1, 3, 3 ,3); /* l p p p */
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
x4 = glmm_shuff1(x3, 1, 3, 3, 3); /* j n n n */
x7 = glmm_shuff1(x3, 0, 2, 2, 2); /* i m m m */
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
t0 = _mm_mul_ps(x3, x1);
t1 = _mm_mul_ps(x5, x1);
t2 = _mm_mul_ps(x5, x2);
t3 = _mm_mul_ps(x6, x1);
t4 = _mm_mul_ps(x6, x2);
t5 = _mm_mul_ps(x6, x4);
/* t1[0] = k * p - o * l;
t1[0] = k * p - o * l;
t2[0] = g * p - o * h;
t3[0] = g * l - k * h; */
t0 = glmm_fnmadd(x2, x0, t0);
/* t1[1] = j * p - n * l;
t1[1] = j * p - n * l;
t2[1] = f * p - n * h;
t3[1] = f * l - j * h; */
t1 = glmm_fnmadd(x4, x0, t1);
/* t1[2] = j * o - n * k
t1[2] = j * o - n * k;
t2[2] = f * o - n * g;
t3[2] = f * k - j * g; */
t2 = glmm_fnmadd(x4, x3, t2);
/* t1[3] = i * p - m * l;
t1[3] = i * p - m * l;
t2[3] = e * p - m * h;
t3[3] = e * l - i * h; */
t3 = glmm_fnmadd(x7, x0, t3);
/* t1[4] = i * o - m * k;
t1[4] = i * o - m * k;
t2[4] = e * o - m * g;
t3[4] = e * k - i * g; */
t4 = glmm_fnmadd(x7, x3, t4);
/* t1[5] = i * n - m * j;
t1[5] = i * n - m * j;
t2[5] = e * n - m * f;
t3[5] = e * j - i * f; */
t5 = glmm_fnmadd(x7, x5, t5);
x4 = _mm_movelh_ps(r0, r1); /* f e b a */
x5 = _mm_movehl_ps(r1, r0); /* h g d c */
x0 = glmm_shuff1(x4, 0, 0, 0, 2); /* a a a e */
x1 = glmm_shuff1(x4, 1, 1, 1, 3); /* b b b f */
x2 = glmm_shuff1(x5, 0, 0, 0, 2); /* c c c g */
x3 = glmm_shuff1(x5, 1, 1, 1, 3); /* d d d h */
v2 = _mm_mul_ps(x0, t1);
v1 = _mm_mul_ps(x0, t0);
v3 = _mm_mul_ps(x0, t2);
v0 = _mm_mul_ps(x1, t0);
v2 = glmm_fnmadd(x1, t3, v2);
v3 = glmm_fnmadd(x1, t4, v3);
v0 = glmm_fnmadd(x2, t1, v0);
v1 = glmm_fnmadd(x2, t3, v1);
v3 = glmm_fmadd(x2, t5, v3);
v0 = glmm_fmadd(x3, t2, v0);
v2 = glmm_fmadd(x3, t5, v2);
v1 = glmm_fmadd(x3, t4, v1);
/*
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
dest[0][1] =-(b * t1[0] - c * t1[1] + d * t1[2]);
dest[0][2] = b * t2[0] - c * t2[1] + d * t2[2];
dest[0][3] =-(b * t3[0] - c * t3[1] + d * t3[2]); */
v0 = _mm_xor_ps(v0, x8);
/*
dest[2][0] = e * t1[1] - f * t1[3] + h * t1[5];
dest[2][1] =-(a * t1[1] - b * t1[3] + d * t1[5]);
dest[2][2] = a * t2[1] - b * t2[3] + d * t2[5];
dest[2][3] =-(a * t3[1] - b * t3[3] + d * t3[5]);*/
v2 = _mm_xor_ps(v2, x8);
/*
dest[1][0] =-(e * t1[0] - g * t1[3] + h * t1[4]);
dest[1][1] = a * t1[0] - c * t1[3] + d * t1[4];
dest[1][2] =-(a * t2[0] - c * t2[3] + d * t2[4]);
dest[1][3] = a * t3[0] - c * t3[3] + d * t3[4]; */
v1 = _mm_xor_ps(v1, x9);
/*
dest[3][0] =-(e * t1[2] - f * t1[4] + g * t1[5]);
dest[3][1] = a * t1[2] - b * t1[4] + c * t1[5];
dest[3][2] =-(a * t2[2] - b * t2[4] + c * t2[5]);
dest[3][3] = a * t3[2] - b * t3[4] + c * t3[5]; */
v3 = _mm_xor_ps(v3, x9);
/* determinant */
x0 = _mm_shuffle_ps(v0, v1, _MM_SHUFFLE(0, 0, 0, 0));
x1 = _mm_shuffle_ps(v2, v3, _MM_SHUFFLE(0, 0, 0, 0));
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
x0 = _mm_div_ps(_mm_set1_ps(1.0f), glmm_vhadd(_mm_mul_ps(x0, r0)));
glmm_store(dest[0], _mm_mul_ps(v0, x0));
glmm_store(dest[1], _mm_mul_ps(v1, x0));
glmm_store(dest[2], _mm_mul_ps(v2, x0));
glmm_store(dest[3], _mm_mul_ps(v3, x0));
}
#endif
#endif /* cglm_mat_sse_h */

View File

@ -0,0 +1,54 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_quat_simd_h
#define cglm_quat_simd_h
#if defined( __SSE__ ) || defined( __SSE2__ )
#include "../../common.h"
#include "../intrin.h"
CGLM_INLINE
void
glm_quat_mul_sse2(versor p, versor q, versor dest) {
/*
+ (a1 b2 + b1 a2 + c1 d2 d1 c2)i
+ (a1 c2 b1 d2 + c1 a2 + d1 b2)j
+ (a1 d2 + b1 c2 c1 b2 + d1 a2)k
a1 a2 b1 b2 c1 c2 d1 d2
*/
__m128 xp, xq, x1, x2, x3, r, x, y, z;
xp = glmm_load(p); /* 3 2 1 0 */
xq = glmm_load(q);
x1 = _mm_set_ps(-0.f, 0.f, -0.f, 0.f); /* TODO: _mm_set1_ss() + shuff ? */
r = _mm_mul_ps(glmm_splat_w(xp), xq);
x2 = _mm_unpackhi_ps(x1, x1);
x3 = glmm_shuff1(x1, 3, 2, 0, 1);
x = glmm_splat_x(xp);
y = glmm_splat_y(xp);
z = glmm_splat_z(xp);
x = _mm_xor_ps(x, x1);
y = _mm_xor_ps(y, x2);
z = _mm_xor_ps(z, x3);
x1 = glmm_shuff1(xq, 0, 1, 2, 3);
x2 = glmm_shuff1(xq, 1, 0, 3, 2);
x3 = glmm_shuff1(xq, 2, 3, 0, 1);
r = glmm_fmadd(x, x1, r);
r = glmm_fmadd(y, x2, r);
r = glmm_fmadd(z, x3, r);
glmm_store(dest, r);
}
#endif
#endif /* cglm_quat_simd_h */

307
include/cglm/simd/x86.h Normal file
View File

@ -0,0 +1,307 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_simd_x86_h
#define cglm_simd_x86_h
#include "intrin.h"
#ifdef CGLM_SIMD_x86
#ifdef CGLM_ALL_UNALIGNED
# define glmm_load(p) _mm_loadu_ps(p)
# define glmm_store(p, a) _mm_storeu_ps(p, a)
#else
# define glmm_load(p) _mm_load_ps(p)
# define glmm_store(p, a) _mm_store_ps(p, a)
#endif
#define glmm_set1(x) _mm_set1_ps(x)
#define glmm_128 __m128
#ifdef CGLM_USE_INT_DOMAIN
# define glmm_shuff1(xmm, z, y, x, w) \
_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(xmm), \
_MM_SHUFFLE(z, y, x, w)))
#else
# define glmm_shuff1(xmm, z, y, x, w) \
_mm_shuffle_ps(xmm, xmm, _MM_SHUFFLE(z, y, x, w))
#endif
#define glmm_splat(x, lane) glmm_shuff1(x, lane, lane, lane, lane)
#define glmm_splat_x(x) glmm_splat(x, 0)
#define glmm_splat_y(x) glmm_splat(x, 1)
#define glmm_splat_z(x) glmm_splat(x, 2)
#define glmm_splat_w(x) glmm_splat(x, 3)
/* glmm_shuff1x() is DEPRECATED!, use glmm_splat() */
#define glmm_shuff1x(xmm, x) glmm_shuff1(xmm, x, x, x, x)
#define glmm_shuff2(a, b, z0, y0, x0, w0, z1, y1, x1, w1) \
glmm_shuff1(_mm_shuffle_ps(a, b, _MM_SHUFFLE(z0, y0, x0, w0)), \
z1, y1, x1, w1)
#ifdef __AVX__
# ifdef CGLM_ALL_UNALIGNED
# define glmm_load256(p) _mm256_loadu_ps(p)
# define glmm_store256(p, a) _mm256_storeu_ps(p, a)
# else
# define glmm_load256(p) _mm256_load_ps(p)
# define glmm_store256(p, a) _mm256_store_ps(p, a)
# endif
#endif
static inline
__m128
glmm_abs(__m128 x) {
return _mm_andnot_ps(_mm_set1_ps(-0.0f), x);
}
static inline
__m128
glmm_vhadd(__m128 v) {
__m128 x0;
x0 = _mm_add_ps(v, glmm_shuff1(v, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 0, 1));
return x0;
}
static inline
__m128
glmm_vhadds(__m128 v) {
#if defined(__SSE3__)
__m128 shuf, sums;
shuf = _mm_movehdup_ps(v);
sums = _mm_add_ps(v, shuf);
shuf = _mm_movehl_ps(shuf, sums);
sums = _mm_add_ss(sums, shuf);
return sums;
#else
__m128 shuf, sums;
shuf = glmm_shuff1(v, 2, 3, 0, 1);
sums = _mm_add_ps(v, shuf);
shuf = _mm_movehl_ps(shuf, sums);
sums = _mm_add_ss(sums, shuf);
return sums;
#endif
}
static inline
float
glmm_hadd(__m128 v) {
return _mm_cvtss_f32(glmm_vhadds(v));
}
static inline
__m128
glmm_vhmin(__m128 v) {
__m128 x0, x1, x2;
x0 = _mm_movehl_ps(v, v); /* [2, 3, 2, 3] */
x1 = _mm_min_ps(x0, v); /* [0|2, 1|3, 2|2, 3|3] */
x2 = glmm_splat(x1, 1); /* [1|3, 1|3, 1|3, 1|3] */
return _mm_min_ss(x1, x2);
}
static inline
float
glmm_hmin(__m128 v) {
return _mm_cvtss_f32(glmm_vhmin(v));
}
static inline
__m128
glmm_vhmax(__m128 v) {
__m128 x0, x1, x2;
x0 = _mm_movehl_ps(v, v); /* [2, 3, 2, 3] */
x1 = _mm_max_ps(x0, v); /* [0|2, 1|3, 2|2, 3|3] */
x2 = glmm_splat(x1, 1); /* [1|3, 1|3, 1|3, 1|3] */
return _mm_max_ss(x1, x2);
}
static inline
float
glmm_hmax(__m128 v) {
return _mm_cvtss_f32(glmm_vhmax(v));
}
static inline
__m128
glmm_vdots(__m128 a, __m128 b) {
#if (defined(__SSE4_1__) || defined(__SSE4_2__)) && defined(CGLM_SSE4_DOT)
return _mm_dp_ps(a, b, 0xFF);
#elif defined(__SSE3__) && defined(CGLM_SSE3_DOT)
__m128 x0, x1;
x0 = _mm_mul_ps(a, b);
x1 = _mm_hadd_ps(x0, x0);
return _mm_hadd_ps(x1, x1);
#else
return glmm_vhadds(_mm_mul_ps(a, b));
#endif
}
static inline
__m128
glmm_vdot(__m128 a, __m128 b) {
#if (defined(__SSE4_1__) || defined(__SSE4_2__)) && defined(CGLM_SSE4_DOT)
return _mm_dp_ps(a, b, 0xFF);
#elif defined(__SSE3__) && defined(CGLM_SSE3_DOT)
__m128 x0, x1;
x0 = _mm_mul_ps(a, b);
x1 = _mm_hadd_ps(x0, x0);
return _mm_hadd_ps(x1, x1);
#else
__m128 x0;
x0 = _mm_mul_ps(a, b);
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 3, 2));
return _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 0, 1));
#endif
}
static inline
float
glmm_dot(__m128 a, __m128 b) {
return _mm_cvtss_f32(glmm_vdots(a, b));
}
static inline
float
glmm_norm(__m128 a) {
return _mm_cvtss_f32(_mm_sqrt_ss(glmm_vhadds(_mm_mul_ps(a, a))));
}
static inline
float
glmm_norm2(__m128 a) {
return _mm_cvtss_f32(glmm_vhadds(_mm_mul_ps(a, a)));
}
static inline
float
glmm_norm_one(__m128 a) {
return _mm_cvtss_f32(glmm_vhadds(glmm_abs(a)));
}
static inline
float
glmm_norm_inf(__m128 a) {
return _mm_cvtss_f32(glmm_vhmax(glmm_abs(a)));
}
static inline
__m128
glmm_load3(float v[3]) {
__m128i xy;
__m128 z;
xy = _mm_loadl_epi64(CGLM_CASTPTR_ASSUME_ALIGNED(v, const __m128i));
z = _mm_load_ss(&v[2]);
return _mm_movelh_ps(_mm_castsi128_ps(xy), z);
}
static inline
void
glmm_store3(float v[3], __m128 vx) {
_mm_storel_pi(CGLM_CASTPTR_ASSUME_ALIGNED(v, __m64), vx);
_mm_store_ss(&v[2], glmm_shuff1(vx, 2, 2, 2, 2));
}
static inline
__m128
glmm_div(__m128 a, __m128 b) {
return _mm_div_ps(a, b);
}
/* enable FMA macro for MSVC? */
#if defined(_MSC_VER) && !defined(__FMA__) && defined(__AVX2__)
# define __FMA__ 1
#endif
static inline
__m128
glmm_fmadd(__m128 a, __m128 b, __m128 c) {
#ifdef __FMA__
return _mm_fmadd_ps(a, b, c);
#else
return _mm_add_ps(c, _mm_mul_ps(a, b));
#endif
}
static inline
__m128
glmm_fnmadd(__m128 a, __m128 b, __m128 c) {
#ifdef __FMA__
return _mm_fnmadd_ps(a, b, c);
#else
return _mm_sub_ps(c, _mm_mul_ps(a, b));
#endif
}
static inline
__m128
glmm_fmsub(__m128 a, __m128 b, __m128 c) {
#ifdef __FMA__
return _mm_fmsub_ps(a, b, c);
#else
return _mm_sub_ps(_mm_mul_ps(a, b), c);
#endif
}
static inline
__m128
glmm_fnmsub(__m128 a, __m128 b, __m128 c) {
#ifdef __FMA__
return _mm_fnmsub_ps(a, b, c);
#else
return _mm_xor_ps(_mm_add_ps(_mm_mul_ps(a, b), c), _mm_set1_ps(-0.0f));
#endif
}
#if defined(__AVX__)
static inline
__m256
glmm256_fmadd(__m256 a, __m256 b, __m256 c) {
#ifdef __FMA__
return _mm256_fmadd_ps(a, b, c);
#else
return _mm256_add_ps(c, _mm256_mul_ps(a, b));
#endif
}
static inline
__m256
glmm256_fnmadd(__m256 a, __m256 b, __m256 c) {
#ifdef __FMA__
return _mm256_fnmadd_ps(a, b, c);
#else
return _mm256_sub_ps(c, _mm256_mul_ps(a, b));
#endif
}
static inline
__m256
glmm256_fmsub(__m256 a, __m256 b, __m256 c) {
#ifdef __FMA__
return _mm256_fmsub_ps(a, b, c);
#else
return _mm256_sub_ps(_mm256_mul_ps(a, b), c);
#endif
}
static inline
__m256
glmm256_fnmsub(__m256 a, __m256 b, __m256 c) {
#ifdef __FMA__
return _mm256_fmsub_ps(a, b, c);
#else
return _mm256_xor_ps(_mm256_sub_ps(_mm256_mul_ps(a, b), c),
_mm256_set1_ps(-0.0f));
#endif
}
#endif
#endif
#endif /* cglm_simd_x86_h */

Some files were not shown because too many files have changed in this diff Show More